Page 38 - IJB-5-1
P. 38
Shuai C
structured scaffold using selective laser sintering method Des, 95: 188–197.
for bio–medical applications. J Mech Sci Technol, 30(11): 114. Wang L, Kang J, Sun C, et al., 2017, Mapping porous
5305–5312. microstructures to yield desired mechanical properties for
101. Shuai C, Gao C, Nie Y, et al., 2011, Structure and properties application in 3D printed bone scaffolds and orthopaedic
of nano–hydroxypatite scaffolds for bone tissue engineering implants. Mater Des, 133: 62–68.
with a selective laser sintering system. Nanotechnology, 115. Shah F A, Snis A, Matic A, et al., 2016, 3D printed Ti6Al4V
22(28): 285703. implant surface promotes bone maturation and retains a
102. Shuai C, Li P, Liu J, et al., 2013, Optimization of TCP/HAP higher density of less aged osteocytes at the bone–implant
ratio for better properties of calcium phosphate scaffold via interface. Acta Biomater, 30: 357–367.
selective laser sintering. Mater Charact, 77(3): 23–31. 116. Yang Y, Guo X, He C, et al., 2018, Regulating degradation
103. Liu J, Hu H, Li P, et al., 2013, Fabrication and characterization behavior by incorporating mesoporous silica for Mg bone
of porous 45S5 glass scaffolds via direct selective laser implants. Acs Biomater Sci Eng, 4(3): 1046–1054.
sintering. Mater Manuf Process, 28(6): 610–615. 117. Deng Y, Yang Y, Gao C, et al., 2018, Mechanism for
104. Sing S L, Yeong W Y, Wiria F E, et al., 2017, Direct selective corrosion protection of β–TCP reinforced ZK60 via laser
laser sintering and melting of ceramics: A review. Rapid rapid solidification. Int J Bioprint, 4(1): 124.
Prototyp J, 23(3): 611–623. 118. Shuai C, Xue L, Gao C, et al., Selective laser melting of
105. Liu J, Gao C, Feng P, et al., 2015, A bioactive glass Zn–Ag alloys for bone repair: Microstructure, mechanical
nanocomposite scaffold toughed by multi–wall carbon properties and degradation behaviour. Virtual Phys Prototyp,
nanotubes for tissue engineering. J Ceram Soc Jpn, 13(3): 1-9.
123(1438): 485–491. 119. Yang Y, Yuan F, Gao C, et al., 2018, A combined strategy to
106. Gao C, Pei F, Peng S, et al., 2017, Carbon nanotubes, enhance the properties of Zn by laser rapid solidification and
graphene and boron nitride nanotubes reinforced bioactive laser alloying. J Mech Behav Biomed Mater, 82: 51–60.
ceramics for bone repair. Acta Biomater, 61: 1. 120. Sing S L, An J, Yeong W Y, et al., 2016, Laser and electron–
107. Järvenpää A, Karjalainen P, Mäntyjärvi K, 2012, Passive laser beam powder–bed additive manufacturing of metallic
assisted bending of ultra–high strength steels. Adv Mater Res, implants: A review on processes, materials and designs.
418–420: 1542–1547. J Orthop Res, 34(3): 369–385.
108. Gao C, Liu T, Shuai C, et al., 2014, Enhancement mechanisms 121. Shuai C, Yang Y, Wu P, et al., 2017, Laser rapid solidification
of graphene in nano–58S bioactive glass scaffold: Mechanical improves corrosion behavior of Mg–Zn–Zr alloy. J Alloys
and biological performance. Sci Rep, 4(4): 4712. Comp, 691: 961–969.
109. Duan S, Feng P, Gao C, et al., 2015, Microstructure evolution 122. Shuai C, He C, Feng P, et al., 2017, Biodegradation
and mechanical properties improvement in liquid–phase– mechanisms of selective laser–melted Mg–xAl–Zn alloy:
sintered hydroxyapatite by laser sintering. Materials, 8(3): Grain size and intermetallic phase. Virtual Phys Prototyp,
1162–1175. 13(2): 1–11.
110. Liu D, Zhuang J, Shuai C, et al., 2013, Mechanical properties’ 123. Yang Y, Wu P, Lin X, et al., 2016, System development,
improvement of a tricalcium phosphate scaffold with poly–l– formability quality and microstructure evolution of selective
lactic acid in selective laser sintering. Biofabrication, 5(2): laser–melted magnesium. Virtual Phys Prototyp, 11(3):
25005. 173–181.
111. Gu D, Hagedorn Y C, Meiners W, et al., 2012, Densification 124. Li Y, Zhou J, Pavanram P, et al., 2018, Additively
behavior, microstructure evolution, and wear performance of manufactured biodegradable porous magnesium. Acta
selective laser melting processed commercially pure titanium. Biomater, 67: 378–392.
Acta Mater, 60(9): 3849–3860. 125. Grasso M, Demir A, Previtali B, et al., 2018, In situ
112. Čapek J, Machová M, Fousová M, et al., 2016, Highly porous, monitoring of selective laser melting of zinc powder via
low elastic modulus 316L stainless steel scaffold prepared by infrared imaging of the process plume. Robot Comput Integr
selective laser melting. Mater Sci Eng C, 69: 631–639. Manuf, 49: 229–239.
113. Weißmann V, Bader R, Hansmann H, et al., 2016, Influence 126. Wen P, Jauer L, Voshage M, et al., 2018, Densification
of the structural orientation on the mechanical properties of behavior of pure Zn metal parts produced by selective laser
selective laser melted Ti6Al4V open–porous scaffolds. Mater melting for manufacturing biodegradable implants. J Mater
International Journal of Bioprinting (2019)–Volume 5, Issue 1 21

