Page 38 - IJB-5-1
P. 38

Shuai C
               structured  scaffold  using selective laser  sintering  method   Des, 95: 188–197.
               for  bio–medical  applications.  J Mech  Sci  Technol,  30(11):   114.  Wang L, Kang J, Sun C,  et al., 2017, Mapping porous
               5305–5312.                                          microstructures to yield desired mechanical  properties for
           101.  Shuai C, Gao C, Nie Y, et al., 2011, Structure and properties   application  in 3D  printed bone scaffolds and orthopaedic
               of nano–hydroxypatite scaffolds for bone tissue engineering   implants. Mater Des, 133: 62–68.
               with a selective  laser sintering  system.  Nanotechnology,   115.  Shah F A, Snis A, Matic A, et al., 2016, 3D printed Ti6Al4V
               22(28): 285703.                                     implant  surface promotes bone maturation  and retains a
           102.  Shuai C, Li P, Liu J, et al., 2013, Optimization of TCP/HAP   higher density of less aged osteocytes at the bone–implant
               ratio for better properties of calcium phosphate scaffold via   interface. Acta Biomater, 30: 357–367.
               selective laser sintering. Mater Charact, 77(3): 23–31.  116.  Yang Y, Guo X, He C, et al., 2018, Regulating degradation
           103.  Liu J, Hu H, Li P, et al., 2013, Fabrication and characterization   behavior  by incorporating  mesoporous silica  for Mg bone
               of porous 45S5 glass scaffolds via direct selective  laser   implants. Acs Biomater Sci Eng, 4(3): 1046–1054.
               sintering. Mater Manuf Process, 28(6): 610–615.  117.  Deng Y, Yang Y,  Gao  C,  et al., 2018, Mechanism for
           104.  Sing S L, Yeong W Y, Wiria F E, et al., 2017, Direct selective   corrosion  protection  of  β–TCP  reinforced  ZK60  via  laser
               laser  sintering  and melting  of ceramics:  A review.  Rapid   rapid solidification. Int J Bioprint, 4(1): 124.
               Prototyp J, 23(3): 611–623.                     118.  Shuai  C,  Xue  L,  Gao  C,  et al., Selective  laser  melting  of
           105.  Liu J, Gao C, Feng P,  et al., 2015,  A bioactive  glass   Zn–Ag  alloys  for  bone  repair:  Microstructure,  mechanical
               nanocomposite  scaffold toughed  by multi–wall  carbon   properties and degradation behaviour. Virtual Phys Prototyp,
               nanotubes for tissue engineering.  J Ceram  Soc Jpn,   13(3): 1-9.
               123(1438): 485–491.                             119.  Yang Y, Yuan F, Gao C, et al., 2018, A combined strategy to
           106.  Gao C, Pei F, Peng S,  et al., 2017, Carbon nanotubes,   enhance the properties of Zn by laser rapid solidification and
               graphene and boron nitride  nanotubes reinforced bioactive   laser alloying. J Mech Behav Biomed Mater, 82: 51–60.
               ceramics for bone repair. Acta Biomater, 61: 1.  120.  Sing S L, An J, Yeong W Y, et al., 2016, Laser and electron–
           107.  Järvenpää A, Karjalainen P, Mäntyjärvi K, 2012, Passive laser   beam powder–bed additive  manufacturing  of metallic
               assisted bending of ultra–high strength steels. Adv Mater Res,   implants:  A review on processes, materials  and designs.
               418–420: 1542–1547.                                 J Orthop Res, 34(3): 369–385.
           108.  Gao C, Liu T, Shuai C, et al., 2014, Enhancement mechanisms   121.  Shuai C, Yang Y, Wu P, et al., 2017, Laser rapid solidification
               of graphene in nano–58S bioactive glass scaffold: Mechanical   improves corrosion behavior of Mg–Zn–Zr alloy.  J Alloys
               and biological performance. Sci Rep, 4(4): 4712.    Comp, 691: 961–969.
           109.  Duan S, Feng P, Gao C, et al., 2015, Microstructure evolution   122.  Shuai  C,  He C,  Feng P,  et al., 2017,  Biodegradation
               and mechanical  properties improvement  in liquid–phase–  mechanisms  of selective  laser–melted  Mg–xAl–Zn alloy:
               sintered  hydroxyapatite  by laser  sintering.  Materials, 8(3):   Grain size and intermetallic  phase.  Virtual Phys Prototyp,
               1162–1175.                                          13(2): 1–11.
           110.  Liu D, Zhuang J, Shuai C, et al., 2013, Mechanical properties’   123.  Yang  Y,  Wu  P,  Lin  X,  et al., 2016, System  development,
               improvement of a tricalcium phosphate scaffold with poly–l–  formability quality and microstructure evolution of selective
               lactic acid in selective laser sintering. Biofabrication, 5(2):   laser–melted  magnesium.  Virtual Phys Prototyp, 11(3):
               25005.                                              173–181.
           111.  Gu D, Hagedorn Y C, Meiners W, et al., 2012, Densification   124.  Li  Y, Zhou J, Pavanram  P,  et al.,  2018, Additively
               behavior, microstructure evolution, and wear performance of   manufactured  biodegradable  porous magnesium.  Acta
               selective laser melting processed commercially pure titanium.   Biomater, 67: 378–392.
               Acta Mater, 60(9): 3849–3860.                   125.  Grasso M, Demir  A, Previtali  B,  et al., 2018,  In situ
           112.  Čapek J, Machová M, Fousová M, et al., 2016, Highly porous,   monitoring of selective laser melting of zinc powder via
               low elastic modulus 316L stainless steel scaffold prepared by   infrared imaging of the process plume. Robot Comput Integr
               selective laser melting. Mater Sci Eng C, 69: 631–639.  Manuf, 49: 229–239.
           113.  Weißmann V, Bader R, Hansmann H, et al., 2016, Influence   126.  Wen  P,  Jauer  L,  Voshage  M,  et al.,  2018,  Densification
               of the structural orientation on the mechanical properties of   behavior of pure Zn metal parts produced by selective laser
               selective laser melted Ti6Al4V open–porous scaffolds. Mater   melting for manufacturing biodegradable implants. J Mater

                                       International Journal of Bioprinting (2019)–Volume 5, Issue 1        21
   33   34   35   36   37   38   39   40   41   42   43