Page 54 - IJB-5-1
P. 54
New microorganism isolation techniques with emphasis on laser printing
of mesoscopic patterns of viable Escherichia coli by ambient bioengineered bug: Methylobacterium extorquens tuned as
laser transfer. Biomaterials, 23(1): 161–166. https://doi. a microbial bioplastic factory. Bioeng Bugs, 2(2): 71–79.
org/10.1016/S0142-9612(01)00091-6. https://doi.org/10.4161/bbug.2.2.15009.
85. Hopp B, Smausz T, Antal Z, et al., 2004, Absorbing film 89. Zhong C, Gurry T, Cheng A A, et al., 2014, Strong underwater
assisted laser induced forward transfer of fungi (Trichoderma adhesives made by self-assembling multi-protein nanofibres.
conidia). J Appl Phys, 96(6): 3478–3481. https://doi. Nat Nanotechnol, 9(10): 858–866. https://doi.org/10.1038/
org/10.1063/1.1782275. nnano.2014.199.
86. Francois K, Devlieghere F, Standaert A R, et al., 2003, 90. Chen A Y, Deng Z, Billings A N, et al., 2014, Synthesis and
Modelling the individual cell lag phase. Isolating single cells: patterning of tunable multiscale materials with engineered
Protocol development. Lett Appl Microbiol, 37(1): 26–30. cells. Nat Mater, 13(5): 515–523. https://doi.org/10.1016/j.
https://doi.org/10.1046/j.1472-765X.2003.01340.x. matdes.2013.08.029; https://doi.org/10.1038/nmat3912.
87. Gross A, Schoendube J, Zimmermann S, et al., 2015, 91. Lehner B A E, Schmieden D T, Meyer A S, 2017, A
Technologies for single-cell isolation. Int J Mol Sci, 16(8): straightforward approach for 3D bacterial printing. ACS
16897–16919. https://doi.org/10.3390/ijms160816897. Synth Biol, 6(7): 1124–1130. https://doi.org/10.1021/
88. Höfer P, Vermette P, Groleau D, 2011, Introducing a new acssynbio.6b00395.
12 International Journal of Bioprinting (2019)–Volume 5, Issue 1

