Page 53 - IJB-5-1
P. 53
Cheptsov VS, et al.
jviromet.2010.04.005. metal film. Lett Appl Microbiol Rev, 67: 544-549. https://doi.
60. Ringeisen B R, Othon C M, Barron J A, et al., 2006, Jet-based org/10.1111/lam.13074.
methods to print living cells. Biotechnol J, 1(9): 930–948. 73. Ara I, Kudo T, Matsumoto A, et al., 2007, Nonomuraea
https://doi.org/10.1002/biot.200600058. bangladeshensis Sp. Nov. and Nonomuraea coxensis Sp.
61. Barron J A, Rosen R, Jones-Meehan J, et al., 2004, Biological Nov. Int J Syst Evol Microbiol, 57(7): 1504–1509. https://doi.
laser printing of genetically modified Escherichia coli for org/10.1099/ijs.0.65054-0.
biosensor applications. Biosens Bioelectron, 20(2): 246–252. 74. Sungthong R, Nakaew N, 2015, The genus Nonomuraea:
https://doi.org/10.1016/j.bios.2004.01.011. A review of a rare actinomycete taxon for novel metabolites.
62. Barron J A, Young H D, Dlott D D, et al., 2005, Printing J Basic Microbiol, 55(5): 554–565. https://doi.org/10.1002/
of protein microarrays via a capillary-free fluid jetting jobm.201300691.
mechanism. Proteomics, 5(16): 4138–4144. https://doi. 75. Yusupov V I, Zhigarkov V S, Churbanova E S, et al.,
org/10.1002/pmic.200401294. 2017, Laser-induced transfer of gel microdroplets for cell
63. Taidi B, Lebernede G, Koch L, et al., 2016, Colony printing. Quantum Electron, 47(12): 1158–1165. https://doi.
development of laser printed eukaryotic (yeast and microalga) org/10.1070/QEL16512.
microorganisms in co-culture. Int J Bioprinting, 2(2): 37–43. 76. Kohli R, Bose B, Gupta P K, 2001, Induction of phr gene
https://doi.org/10.18063/IJB.2016.02.001. expression in E. coli strain KY706/pPL-1 by He-Ne laser
64. Unger C, Gruene M, Koch L, et al., 2011, Time-resolved (632.8 nm) irradiation. J Photochem Photobiol B Biol, 60(2-3):
imaging of hydrogel printing via laser-induced forward 136–142. https://doi.org/10.1016/S1011-1344(01)00139-7.
transfer. Appl Phys A Mater Sci Process, 103(2): 271–277. 77. Nussbaum E L, Lilge L, Mazzulli T, 2002, Delivering radiant
https://doi.org/10.1007/s00339-010-6030-4. exposure of 1-50 J/cm 2 on three species of bacteria in vitro.
65. Gruene M, Unger C, Koch L, et al., 2011, Dispensing Surgery, 20(6): 325–333.
pico to nanolitre of a natural hydrogel by laser-assisted 78. Nussbaum E L, Lilge L, Mazzulli T, 2003, Effects of low-
bioprinting. Biomed Eng Online, 10(3): 9–12. https://doi. level laser therapy (LLLT) of 810 nm upon in vitro growth
org/10.1186/1475-925X-10-19. of bacteria: Relevance of irradiance and radiant exposure.
66. Koch L, Kuhn S, Sorg H, et al., 2010, Laser printing of skin J Clin Laser Med Surg, 21(5): 283–290. https://doi.
cells and human stem cells. Tissue Eng Part C Methods, org/10.1089/104454703322564497.
16(5): 847–854. https://doi.org/10.1089/ten.tec.2009.0397. 79. Chen Z, Lu J, Gao S H, et al., 2018, Silver nanoparticles
67. Deng Y, Renaud P, Guo Z, et al., 2017, Single cell isolation stimulate the proliferation of sulfate reducing bacterium
process with laser induced forward transfer. J Biol Eng, Desulfovibrio vulgaris. Water Res Pergamon, 129: 163–171.
11(1): 2. https://doi.org/10.1186/s13036-016-0045-0. https://doi.org/10.1016/j.watres.2017.11.021.
68. Ringeisen B R, Rincon K, Fitzgerald L A, et al., 2015, Printing 80. Miazek K, Iwanek W, Remacle C, et al., 2015, Effect of
soil: A single-step, high-throughput method to isolate micro- metals, metalloids and metallic nanoparticles on microalgae
organisms and near-neighbour microbial consortia from a growth and industrial product biosynthesis: A review. Int
complex environmental sample. Methods Ecol Evol, 6(2): J Mol Sci, 16(10): 23929–23969. https://doi.org/10.3390/
209–217. https://doi.org/10.1111/2041-210X.12303. ijms161023929.
69. Ringeisen B R, Lizewski S E, Fitzgerald L A, et al., 2010, 81. Slavin Y N, Asnis J, Häfeli U O, et al., 2017, Metal
Single cell isolation of bacteria from microbial fuel cells and nanoparticles: Understanding the mechanisms behind
potomac river sediment. Electroanalysis, 22(7-8): 875–882. antibacterial activity. J Nanobiotechnol, 15(1): 1–20. https://
https://doi.org/10.1002/elan.200880012. doi.org/10.1186/s12951-017-0308-z.
70. Yusupov V I, Gorlenko M V, Cheptsov V S, et al., 2018, 82. Schacht V J, Neumann L V, Sandhi S K, et al., 2013, Effects
Laser engineering of microbial systems. Laser Phys Lett, of silver nanoparticles on microbial growth dynamics. J Appl
15(6): 065604. https://doi.org/10.1088/1612-202X/aab5ef. Microbiol, 114(1): 25–35. https://doi.org/10.1111/jam.12000.
71. Gorlenko M, Chutko E, Churbanova E, et al., 2018, Laser 83. Haider A J, Haider M J, Majed M D, et al., 2017, Effect of
microsampling of soil microbial community. J Biol Eng Rev, laser fluence on a microarray droplets micro-organisms cells
12: 27. https://doi.org/10.1186/s13036-018-0117-4. by LIFT technique. Energy Procedia, 119: 256–263. https://
72. Cheptsov V S, Churbanova E S, Yusupov V I, et al., 2018, doi.org/10.1016/j.egypro.2017.07.078.
Laser printing of microbial systems: Effect of absorbing 84. Ringeisen B R, Chrisey D B, Piqué A, et al., 2002, Generation
International Journal of Bioprinting (2019)–Volume 5, Issue 1 11

