Page 52 - IJB-5-1
P. 52
New microorganism isolation techniques with emphasis on laser printing
34. Ishii S, Tago K, Senoo K, 2010, Single-cell analysis and in engineered landscapes. Nat Chem Biol, 8(1): 10–13. https://
isolation for microbiology and biotechnology: Methods and doi.org/10.1038/nchembio.749.
applications. Appl Microbiol Biotechnol, 86(5): 1281–1292. 47. Connell J L, Wessel A K, Parsek M R, 2010, Probing
https://doi.org/10.1007/s00253-010-2524-4. prokaryotic social behaviors with bacterial “lobster traps”.
35. Akselrod G M, Timp W, Mirsaidov U, et al., 2006, Laser- Mbio, 1(4): 1–8. https://doi.org/10.1128/mBio.00202-10.
guided assembly of heterotypic three-dimensional living 48. Farsari M, Chichkov B N, 2009, Two-photon fabrication.
cell microarrays. Biophys J, 91(9): 3465–3473. https://doi. Nat Photonics, 3: 450–452. https://doi.org/10.1038/
org/10.1529/biophysj.106.084079. nphoton.2009.131.
36. Rowan B, Wheeler M A, Crooks R M, 2002, Patterning bacteria 49. Nielson R, Kaehr B, Shear J B, 2009, Microreplication
within hyperbranched polymer film templates. Langmuir, and design of biological architectures using dynamic-mask
18(25): 9914–9917. https://doi.org/10.1021/la020664h. multiphoton lithography. Small, 5(1): 120–125. https://doi.
37. Weibel D B, Lee A, Mayer M, et al., 2005, Bacterial printing org/10.1002/smll.200801084.
press that regenerates its ink: Contact-printing bacteria using 50. Kawata S, Sun H B, Tanaka T, et al., 2001, Finer features
hydrogel stamps. Langmuir, 21(14): 6436–6442. https://doi. for functional microdevices. Nature, 412(6848): 697–698.
org/10.1021/la047173c. https://doi.org/10.1038/35089130.
38. Xu L, Robert L, Ouyang Q, et al., 2007, Microcontact printing 51. Kim D, So P T C, 2010, High-throughput three-dimensional
of living bacteria arrays with cellular resolution. Nano Lett, lithographic microfabrication. Opt Lett, 35(10): 1602. https://
7(7): 2068–2072. https://doi.org/10.1021/nl070983z. doi.org/10.1364/OL.35.001602.
39. Eun Y J, Utada A S, Copeland M F, et al., 2011, Encapsulating 52. Connell J L, Ritschdorff E T, Whiteley M, et al., 2013, 3D
bacteria in agarose microparticles using microfluidics for printing of microscopic bacterial communities. Proc Natl
high-throughput cell analysis and isolation. ACS Chem Biol, Acad Sci, 110(46): 18380–18385. https://doi.org/10.1073/
6(3): 260–266. https://doi.org/10.1021/cb100336p. pnas.1309729110.
40. Volfson D, Cookson S, Hasty J, et al., 2008, Biomechanical 53. Obara Y, Yamai S, Nikkawa T, et al., 1981, Preservation and
ordering of dense cell populations. Proc Natl Acad Sci, 105(40): transportation of bacteria by a simple gelatin disk method.
15346–15351. https://doi.org/10.1073/pnas.0706805105. J Clin Microbiol, 14(1): 61–66.
41. Boedicker J Q, Vincent M E, Ismagilov R F, 2009, 54. Kailas L, Ratcliffe E C, Hayhurst E J, et al., 2009,
Microfluidic confinement of single cells of bacteria in small Immobilizing live bacteria for AFM imaging of cellular
volumes initiates high-density behavior of quorum sensing processes. Ultramicroscopy, 109(7): 775–780. https://doi.
and growth and reveals its variability. Angew Chemie Int Ed, org/10.1016/j.ultramic.2009.01.012.
48(32): 5908–5911. https://doi.org/10.1002/anie.200901550. 55. Jordan P, Leach J, Padgett M, et al., 2005, Creating permanent
42. Flickinger S T, Copeland M F, Downes E M, et al., 2011, 3D arrangements of isolated cells using holographic
Quorum sensing between Pseudomonas aeruginosa biofilms optical tweezers. Lab Chip, 5(11): 1224–1228. https://doi.
accelerates cell growth. J Am Chem Soc, 133: 5966–5975. org/10.1039/b509218c.
https://doi.org/10.1021/ja111131f. 56. Barron J A, Krizman D B, Ringeisen B R, 2005, Laser printing
43. Carnes E C, Lopez D M, Donegan N P, et al., 2010, of single cells: Statistical analysis, cell viability, and stress.
Confinement-induced quorum sensing of individual Ann Biomed Eng, 33(2): 121–130. https://doi.org/10.1007/
Staphylococcus aureus bacteria. Nat Chem Biol, 6(1): 41–45. s10439-005-8971-x.
https://doi.org/10.1038/nchembio.264. 57. Barron J A, Wu P, Ladouceur H D, et al., 2004, Biological laser printing:
44. Yaguchi T, Dwidar M, Byun C K, et al., 2012, Aqueous A novel technique for creating heterogeneous 3-dimensional
two-phase system-derived biofilms for bacterial interaction cell patterns. Biomed Microdevices, 6(2): 139–147. https://doi.
studies. Biomacromolecules, 13(9): 2655–2661. https://doi. org/10.1023/B: BMMD.0000031751.67267.9f.
org/10.1021/bm300500y. 58. Mironov V, Kasyanov V, Drake C, et al., 2008, Organ
45. Cho H J, Jönsson H, Campbell K, et al., 2007, Self- printing: Promises and challenges. Regen Med, 3(1): 93–103.
organization in high-density bacterial colonies: Efficient https://doi.org/10.2217/17460751.3.1.93.
crowd control. PLoS Biol, 5(11): 2614–2623. https://doi. 59. Fitzgerald L A, Wu P K, Gurnon J R, et al., 2010, Isolation
org/10.1371/journal.pbio.0050302. of the phycodnavirus PBCV-1 by biological laser printing.
46. Connell J L, Whiteley M, Shear J B, 2012, Sociomicrobiology J Virol Methods, 167(2): 223–225. https://doi.org/10.1016/j.
10 International Journal of Bioprinting (2019)–Volume 5, Issue 1

