Page 72 - IJB-5-1
P. 72
Mechanisms and modeling of electrohydrodynamic phenomena
319(2): 41–43. https://doi.org/10.1038/319041a0. a current carrying semi–insulating jet. J Fluid Mech, 47(1):
55. Ganan-Calvo A M, Davila J, Barrero A, 1997, Current and 127–143. https://doi.org/10.1017/S0022112071000971.
droplet size in the electrospraying of liquids scaling laws. 69. Hartman R P A, Brunner D J, Camelot D M A, et al., 1999,
J Aerosol Sci, 28(2): 249–275. https://doi.org/10.1016/ Electrohydrodynamic atomization in the cone–jet mode
S0021-8502(96)00433-8. physical modelling of the liquid cone and jet. J Aerosol
56. Barrero A, Ganan-Calvo A M, Davila J, et al., 1998, Low Sci, 30(7): 823–849. https://doi.org/10.1016/S0021-
and high reynolds number flows inside Taylor cones. 8502(99)00033-6.
Phys Rev E, 58(6): 7309–7314. https://doi.org/10.1103/ 70. Gamero-Castano M, Hruby V, 2002, Electric measurements
PhysRevE.58.7309. of charged sprays emitted by cone–jets. J Fluid Mech,
57. Cloupeau M, Prunet-Foch B, 1989, Electrostatic spraying of 459: 245–276. https://doi.org/10.1017/S002211200200798X.
liquids in cone–jet mode. J Electrostat, 22: 135–159. https:// 71. Higuera F J, 2003, Flow rate and electric current emitted
doi.org/10.1016/0304-3886(89)90081-8. by a Taylor cone. J Fluid Mech, 484: 303–327. https://doi.
58. Jayasinghe S N, Edirisinghe M J, 2004, Electric–field driven org/10.1017/S0022112003004385.
jetting from dielectric liquids. Appl Phys Lett, 85(18): 4243– 72. Chen D R, Pui D Y H, 1997, Experimental investigation
4245. https://doi.org/10.1063/1.1812574. of scaling laws for electrospraying-dielctric constant
59. Jayasinghe S N, Edirisinghe M J, 2004, Electrically forced effect. Aerosol Sci Technol, 27: 367–380. https://doi.
jets and microthreads of high viscosity dielectric liquids. org/10.1080/02786829708965479.
J Aerosol Sci, 35(2): 233–243. https://doi.org/10.1016/j. 73. Hohman M M, Shin M, Rutledge G, et al., 2001,
jaerosci.2003.08.004. Electrospinning and electrically forced jets. II.
60. Gañán-Calvo A M, 2000, Erratum: Cone-jet analytical Applications. Phys Fluids, 13(8): 2221–2236. https://doi.
extension of Taylor’s electrostatic solution and the asymptotic org/10.1063/1.1384013; https://doi.org/10.1063/1.1383791.
universal scaling laws in electrospraying. Phys Rev Lett, 74. Forbes R G, 1996, The liquid metal ion source as an
85(19): 4193. https://doi.org/10.1103/PhysRevLett.85.4193. electrically driven vena contracta, and some comments
61. Mestal A J, 1994, The electrohydrodynamic cone–jet at high on LMIS stability. J Phys IV, 6(C5): C543-7. https://doi.
reynolds number. J Aerosol Sci, 25(6): 1037–1047. https:// org/10.1051/jp4:1996506.
doi.org/10.1016/0021-8502(94)90200-3. 75. Bailey A G, 1984, Electrostatic spraying of liquids. Phys Bull,
62. Saville D A, 1970, Electrohydrodynamic stability: Fluid 35: 146–148. https://doi.org/10.1088/0031-9112/35/4/018.
cylinders in longitudinal electric fields. Phys Fluids, 13(12): 76. Rayleigh L, 1879, On the capillary phenomena of jets. Proc R
2987–2994. https://doi.org/10.1063/1.1692890. Soc London, 29: 71–97. https://doi.org/10.1098/rspl.1879.0015.
63. Yarin A L, 2001, Taylor cone and jetting from liquid droplets 77. Lefebvre A H, McDonell V G, 2017, Atomization and
in electrospinning of nanofibers. J Appl Phys, 90(9): 4836– Sprays. 2 ed. Boca Raton: CRC Press. p25. https://doi.
nd
4846. https://doi.org/10.1063/1.1408260. org/10.1201/9781315120911.
64. Choi H K, Park J U, Park O O, et al., 2008, Scaling 78. Saville D A, 1971, Electrohydrodynamic stability effects
laws for jet pulsations associated with high–resolution of charge relaxation at the interface of a liquid jet.
electrohydrodynamic printing. Appl Phys Lett, 92(12): J Fluid Mech, 48(4): 815–827. https://doi.org/10.1017/
1231091–1231093. https://doi.org/10.1063/1.2903700. S0022112071001873.
65. Cloupeau M, 1994, Receipes for use of EHD spraying in cone– 79. Hohman M M, Shin M, Rutledge G, et al., 2001,
jet mode and notes on corona discharge effects. J Aerosol Electrospinning and electrically forced jets-I. Stability
Sci, 25(6): 1143–1157. https://doi.org/10.1016/0021- theory. Phys Fluids, 13(8): 2201–2220. https://doi.
8502(94)90206-2. org/10.1063/1.1384013; https://doi.org/10.1063/1.1383791.
66. Ganan-Calvo A M, 1999, The surface charge in electrospraying 80. Saville D A, 1971, Stability of electrically charged viscous
its nature and its universal scaling laws. J Aerosol Sci, 30(7): cylinders. Phys Fluids, 14(6): 1095–1099. https://doi.
863–872. https://doi.org/10.1016/S0021-8502(98)00780-0. org/10.1063/1.1693569.
67. Ganan-Calvo A M, 1997, On the theory of 81. López-Herrera J M, Riesco-Chueca P, Gañán-Calvo A M,
electrohydrodynamically driven capillary jets. J Fluid Mech, 2005, Linear stability analysis of axisymmetric perturbations
335: 165–188. https://doi.org/10.1017/S0022112096004466. in imperfectly conducting liquid jets. Phys Fluids, 17(3):
68. Melcher J R, Warren E P, 1971, Electrohydrodynamics of 3410601–3410621. https://doi.org/10.1063/1.1863285.
18 International Journal of Bioprinting (2019)–Volume 5, Issue 1

