Page 72 - IJB-5-1
P. 72

Mechanisms and modeling of electrohydrodynamic phenomena
               319(2): 41–43. https://doi.org/10.1038/319041a0.    a current carrying semi–insulating jet. J Fluid Mech, 47(1):
           55.  Ganan-Calvo A M, Davila J, Barrero A, 1997, Current and   127–143. https://doi.org/10.1017/S0022112071000971.
               droplet size in the electrospraying  of liquids scaling laws.   69.  Hartman R P A, Brunner D J, Camelot D M A, et al., 1999,
               J Aerosol Sci, 28(2): 249–275. https://doi.org/10.1016/  Electrohydrodynamic  atomization  in  the  cone–jet  mode
               S0021-8502(96)00433-8.                              physical  modelling  of the  liquid  cone  and  jet.  J Aerosol
           56.  Barrero A, Ganan-Calvo A M, Davila J, et al., 1998, Low   Sci,  30(7):  823–849.  https://doi.org/10.1016/S0021-
               and  high  reynolds  number  flows  inside  Taylor  cones.   8502(99)00033-6.
               Phys Rev  E, 58(6): 7309–7314. https://doi.org/10.1103/  70.  Gamero-Castano M, Hruby V, 2002, Electric measurements
               PhysRevE.58.7309.                                   of charged sprays emitted  by cone–jets.  J Fluid Mech,
           57.  Cloupeau M, Prunet-Foch B, 1989, Electrostatic spraying of   459: 245–276. https://doi.org/10.1017/S002211200200798X.
               liquids in cone–jet mode. J Electrostat, 22: 135–159. https://  71.  Higuera F  J,  2003, Flow rate and electric  current emitted
               doi.org/10.1016/0304-3886(89)90081-8.               by a Taylor cone.  J Fluid  Mech, 484: 303–327. https://doi.
           58.  Jayasinghe S N, Edirisinghe M J, 2004, Electric–field driven   org/10.1017/S0022112003004385.
               jetting from dielectric liquids. Appl Phys Lett, 85(18): 4243–  72.  Chen D R,  Pui D  Y H, 1997,  Experimental  investigation
               4245. https://doi.org/10.1063/1.1812574.            of scaling  laws for electrospraying-dielctric  constant
           59.  Jayasinghe S N, Edirisinghe M J, 2004, Electrically forced   effect.  Aerosol Sci  Technol, 27: 367–380. https://doi.
               jets  and  microthreads  of  high  viscosity  dielectric  liquids.   org/10.1080/02786829708965479.
               J Aerosol Sci, 35(2): 233–243. https://doi.org/10.1016/j.  73.  Hohman  M M, Shin  M, Rutledge  G,  et  al.,  2001,
               jaerosci.2003.08.004.                               Electrospinning  and  electrically  forced  jets.  II.
           60.  Gañán-Calvo  A M, 2000, Erratum: Cone-jet analytical   Applications.  Phys Fluids, 13(8): 2221–2236. https://doi.
               extension of Taylor’s electrostatic solution and the asymptotic   org/10.1063/1.1384013; https://doi.org/10.1063/1.1383791.
               universal  scaling  laws in  electrospraying.  Phys  Rev  Lett,   74.  Forbes R G, 1996,  The liquid metal ion source as an
               85(19): 4193. https://doi.org/10.1103/PhysRevLett.85.4193.  electrically  driven vena contracta, and some comments
           61.  Mestal A J, 1994, The electrohydrodynamic cone–jet at high   on LMIS stability. J Phys  IV, 6(C5): C543-7. https://doi.
               reynolds number.  J Aerosol Sci, 25(6): 1037–1047. https://  org/10.1051/jp4:1996506.
               doi.org/10.1016/0021-8502(94)90200-3.           75.  Bailey A G, 1984, Electrostatic spraying of liquids. Phys Bull,
           62.  Saville  D  A,  1970, Electrohydrodynamic  stability:  Fluid   35: 146–148. https://doi.org/10.1088/0031-9112/35/4/018.
               cylinders in longitudinal electric fields. Phys Fluids, 13(12):   76.  Rayleigh L, 1879, On the capillary phenomena of jets. Proc R
               2987–2994. https://doi.org/10.1063/1.1692890.       Soc London, 29: 71–97. https://doi.org/10.1098/rspl.1879.0015.
           63.  Yarin A L, 2001, Taylor cone and jetting from liquid droplets   77.  Lefebvre  A H, McDonell  V G, 2017,  Atomization  and
               in electrospinning of nanofibers. J Appl Phys, 90(9): 4836–  Sprays.  2  ed.  Boca  Raton:  CRC  Press. p25.  https://doi.
                                                                          nd
               4846. https://doi.org/10.1063/1.1408260.            org/10.1201/9781315120911.
           64.  Choi H K, Park J U, Park O O,  et al., 2008, Scaling   78.  Saville  D  A, 1971, Electrohydrodynamic  stability  effects
               laws for jet  pulsations associated  with high–resolution   of charge relaxation  at the  interface  of a liquid  jet.
               electrohydrodynamic  printing.  Appl Phys Lett, 92(12):   J Fluid Mech, 48(4): 815–827. https://doi.org/10.1017/
               1231091–1231093. https://doi.org/10.1063/1.2903700.  S0022112071001873.
           65.  Cloupeau M, 1994, Receipes for use of EHD spraying in cone–  79.  Hohman  M M, Shin  M, Rutledge  G,  et  al.,  2001,
               jet mode and notes on corona discharge effects.  J Aerosol   Electrospinning  and electrically  forced jets-I. Stability
               Sci,  25(6):  1143–1157.  https://doi.org/10.1016/0021-  theory.  Phys Fluids, 13(8): 2201–2220. https://doi.
               8502(94)90206-2.                                    org/10.1063/1.1384013; https://doi.org/10.1063/1.1383791.
           66.  Ganan-Calvo A M, 1999, The surface charge in electrospraying   80.  Saville D A, 1971, Stability of electrically charged viscous
               its nature and its universal scaling laws. J Aerosol Sci, 30(7):   cylinders.  Phys Fluids, 14(6): 1095–1099. https://doi.
               863–872. https://doi.org/10.1016/S0021-8502(98)00780-0.  org/10.1063/1.1693569.
           67.  Ganan-Calvo  A  M,  1997,  On  the  theory  of  81.  López-Herrera  J M, Riesco-Chueca  P, Gañán-Calvo A M,
               electrohydrodynamically driven capillary jets. J Fluid Mech,   2005, Linear stability analysis of axisymmetric perturbations
               335: 165–188. https://doi.org/10.1017/S0022112096004466.  in  imperfectly  conducting  liquid  jets.  Phys  Fluids,  17(3):
           68.  Melcher  J  R,  Warren  E  P,  1971,  Electrohydrodynamics  of   3410601–3410621. https://doi.org/10.1063/1.1863285.

           18                          International Journal of Bioprinting (2019)–Volume 5, Issue 1
   67   68   69   70   71   72   73   74   75   76   77