Page 63 - IJB-5-2
P. 63
Shuai C, et al.
Perspective. Biomaterials, 112:287-302. DOI 10.1016/j. with Tunable Properties: Toward Bone Tissue Repair. Adv
biomaterials.2016.10.017. Sci, 5(6):1700817. DOI 10.1002/advs.201700817.
3. Gao C, Feng P, Peng S, et al., 2017, Carbon Nanotube, 17. Li Z, Gu X, Lou S, et al., 2008, The Development of
Graphene and Boron Nitride Nanotube Reinforced Bioactive Binary Mg–Ca Alloys for Use as Biodegradable Materials
Ceramics for Bone Repair. Acta Biomater, 61:1-20. DOI within Bone. Biomaterials, 29:1329-44. DOI 10.1016/j.
10.1016/j.actbio.2017.05.020. biomaterials.2007.12.021.
4. Abidin NIZ, Da Forno A, Bestetti M, et al., 2015, Evaluation 18. Shuai C, Wang B, Yang Y, et al., 2019, 3D Honeycomb
of Coatings for Mg Alloys for Biomedical Applications. Adv Nanostructure-encapsulated Magnesium Alloys with Superior
Eng Mater, 17(1):58-67. DOI 10.1002/adem.201300516. Corrosion Resistance and Mechanical Properties. Compos B,
5. Shuai C, Li S, Peng S, et al., 2019, Biodegradable Metallic 162:611-20. DOI 10.1016/j.compositesb.2019.01.031.
Bone Implants. Mater Chem Front, 3:544-62. 19. Lothe J, Pound GM, 1962, Reconsiderations of Nucleation
6. Chai Y, Jiang B, Song J, et al., 2018, Role of Al content on the Theory. J Chem Phys, 36:2080-5.
Microstructure, Texture and Mechanical Properties of Mg-3.5 20. Bian D, Deng J, Li N, et al., 2018, In Vitro and In Vivo Studies
Ca Based Alloys. Mater Sci Eng A, 730:303-16. on Biomedical Magnesium Low-alloying with Elements
7. Zheng YF, Gu XN, Witte F, 2014, Biodegradable Metals. Gadolinium and Zinc for Orthopedic Implant Applications.
Mater Sci Eng R, 77:1-34. ACS Appl Mater Interfaces, 10:4394-408. DOI 10.1021/
8. Cheng W, Bai Y, Wang L, et al., 2018, Strengthening Effect acsami.7b15498.
of Extruded Mg-8Sn-2Zn-2Al Alloy: Influence of Micro and 21. Mochizuki A, Yahata C, Takai H, 2016, Cytocompatibility
Nano-Size Mg-Sn Precipitates. Materials, 10(7):822. DOI of Magnesium and AZ31 Alloy with Three Types of Cell
10.3390/ma10070822. Lines using a Direct In Vitro Method. J Mater Sci Mater Med,
9. Witte F, Kaese V, Haferkamp H, et al., 2005, In vivo Corrosion 27:145. DOI 10.1007/s10856-016-5762-x.
of Four Magnesium Alloys and the Associated Bone 22. Shuai C, Guo W, Wu P, et al., 2018, A Graphene Oxide-
Response. Biomaterials, 26(17):3557-63. DOI 10.1016/j. Ag co-dispersing Nanosystem: Dual Synergistic Effects
biomaterials.2004.09.049. on Antibacterial Activities and Mechanical Properties of
10. Wen Z, Wu C, Dai C, et al., 2009, Corrosion Behaviors of Polymer Scaffolds. Chem Eng J, 347:322-33. DOI 10.1016/j.
Mg and its Alloys with Different Al contents in a Modified cej.2018.04.092.
Simulated Body Fluid. J Alloys Compd, 488(1):392-9. DOI 23. International Organization for Standardization, 2009, ISO
10.1016/j.jallcom.2009.08.147. 10993-5:2009(E). Biological Evaluation of Medical Devices-
11. Baek SM, Kang JS, Shin HJ, et al., 2017, Role of Alloyed Part 5: Tests for In Vitro Cytotoxicity. Geneva: International
Y in Improving the Corrosion Resistance of Extruded Mg– Organization for Standardization.
Al–Ca-based Alloy. Corros Sci, 118:227-32. DOI 10.1016/j. 24. Shuai C, Li Y, Wang G, et al., 2019, Surface Modification of
corsci.2017.01.022. Nanodiamond: Toward the Dispersion of Reinforced Phase in
12. Liu W, Cao F, Chang L, et al., 2009, Effect of Rare Earth Poly-l-lactic Acid Scaffolds. Int J Biol Macromol, 126:1116-
Element Ce and La on Corrosion Behavior of AM60 24. DOI 10.1016/j.ijbiomac.2019.01.004.
Magnesium Alloy. Corros Sci, 51:1334-43. DOI 10.1016/j. 25. Shuai C, Xu Y, Feng P, et al., 2019, Antibacterial Polymer
corsci.2009.03.018. Scaffold Based on Mesoporous Bioactive Glass Loaded
13. Wu PP, Xu FJ, Deng KK, et al., 2017, Effect of Extrusion on with In Situ Grown Silver. Chem Eng J, 374:304-15. DOI
Corrosion Properties of Mg-2Ca-χAl (χ = 0, 2, 3, 5) Alloys. 10.1016/j.cej.2019.03.273.
Corros Sci, 127:280-90. DOI 10.1016/j.corsci.2017.08.014. 26. Shuai C, Cheng Y, Yang Y, et al., 2019, Laser Additive
14. Shuai C, Yang Y, Peng S, et al., 2017, Nd-induced Honeycomb Manufacturing of Zn-2Al Part for Bone Repair: Formability,
Structure of Intermetallic Phase Enhances the Corrosion Microstructure and Properties. J Alloys Compd, 798:606-15.
Resistance of Mg Alloys for Bone Implants. J Mater Sci DOI 10.1016/j.jallcom.2019.05.278.
Mater Med, 28(9):130. DOI 10.1007/s10856-017-5945-0. 27. Feng P, He J, Peng S, et al., 2019, Characterizations and
15. Ai X, Quan G, 2012, Effect of Ti on the Mechanical Properties Interfacial Reinforcement Mechanisms of Multicomponent
and Corrosion of Cast AZ91 Magnesium Alloy. Open Mater Biopolymer Based Scaffold. Mater Sci Eng C, 100:809-25.
Sci J, 6:6-13. 28. Monas A, Shchyglo O, Kim SJ, et al., 2015, Divorced
16. Feng P, Wu P, Gao C, et al., 2018, A Multimaterial Scaffold Eutectic Solidification of Mg-Al Alloys. JOM, 67:1805-11.
International Journal of Bioprinting (2019)–Volume 5, Issue 2 59

