Page 76 - IJB-5-2
P. 76

3D-printing and microfluidics
               Chip, 16(10):1720-42. DOI 10.1039/c6lc00163g.   33.  Au AK,  Lee  W,  Folch A,  2014,  Mail-order  Microfluidics:
           22.  Donvito  L,  Galluccio  L,  Lombardo  A, et  al., 2015,   Evaluation  of  Stereolithography  for  the  Production  of
               Experimental Validation  of  a  Simple,  Low-cost, T-junction   Microfluidic  Devices.  Lab Chip,  14(7):1294-301.  DOI
               Droplet  Generator  Fabricated  Through  3D  Printing.   10.1039/c3lc51360b.
               J  Micromech  Microeng,  25(3):035013.  DOI  10.1088/0960-  34.  Gong  H, Woolley AT,  Nordin  GP,  2016,  High  Density  3D
               1317/25/3/035013.                                   Printed Microfluidic Valves, Pumps, and Multiplexers. Lab
           23.  Chen  C,  Wang Y,  Lockwood  SY, et  al., 2014, 3D-printed   Chip, 16(13):2450-8. DOI 10.1039/c6lc00565a.
               Fluidic  Devices  Enable  Quantitative  Evaluation  of  Blood   35.  Rogers CI, Qaderi K, Woolley AT, et al., 2015, 3D Printed
               Components  in  Modified  Storage  Solutions  for  Use  in   Microfluidic Devices with Integrated Valves. Biomicrofluidics,
               Transfusion  Medicine.  Analyst,  139(13):3219-26.  DOI   9(1):016501. DOI 10.1063/1.4905840.
               10.1039/c3an02357e.                             36.  Keating  SJ,  Gariboldi  MI,  Patrick  WG, et  al.,  2016,  3D
           24.  Kitson PJ, Rosnes MH, Sans V, et al., 2012, Configurable   Printed  Multimaterial  Microfluidic  Valve.  PLoS  One,
               3D-Printed  Millifluidic  and  Microfluidic  ‘Lab  on  a   11(8):e0160624. DOI 10.1371/journal.pone.0160624.
               Chip’reactionware Devices. Lab Chip, 12(18):3267-71. DOI   37.  Sochol  R,  Sweet  E,  Glick  C, et  al.,  2016,  3D  Printed
               10.1039/c2lc40761b.                                 Microfluidic   Circuitry   via   Multijet-based   Additive
           25.  Bishop GW, Satterwhite JE, Bhakta S, et al., 2015, 3D-printed   Manufacturing.  Lab Chip,  16(4):668-78.  DOI  10.1039/
               Fluidic  Devices  for  Nanoparticle  Preparation  and  Flow-  c5lc01389e.
               injection  Amperometry  Using  Integrated  Prussian  Blue   38.  Chen Y, Chan HN, Michael SA, et al., 2017, A Microfluidic
               Nanoparticle-modified Electrodes. Anal Chem, 87(10):5437-43.   Circulatory  System  Integrated  with  Capillary-assisted
               DOI 10.1021/acs.analchem.5b00903.                   Pressure  Sensors.  Lab  Chip,  17(4):653-62.  DOI  10.1039/
           26.  Takenaga S, Schneider B, Erbay E, et al., 2015, Fabrication   c6lc01427e.
               of  Biocompatible  Lab-on-chip  Devices  for  Biomedical   39.  Bhargava  KC,  Thompson  B,  Malmstadt  N,  2014,  Discrete
               Applications  by  Means  of  a  3D-printing  Process.   Elements  for  3D  Microfluidics.  Proc Natl  Acad Sci,
               Physica Status Solidi  A,  212(6):1347-52.  DOI  10.1002/  111(42):15013-8. DOI 10.1073/pnas.1414764111.
               pssa.201532053.                                 40.  Lee KG, Park KJ, Seok S, et al., 2014, 3D Printed Modules for
           27.  Lee W, Kwon D, Choi W, et al., 2015, 3D-printed Microfluidic   Integrated Microfluidic Devices. RSC Adv, 4(62):32876-80.
               Device for the Detection of Pathogenic Bacteria using Size-  DOI 10.1039/c4ra05072j.
               based Separation in Helical Channel with Trapezoid Cross-  41.  Vittayarukskul  K,  Lee  AP,  2017,  A  Truly  Lego -like
                                                                                                          ®
               section. Sci Rep, 5:7717. DOI 10.1038/srep09701.    Modular  Microfluidics  Platform. J  Micromech  Microeng,
           28.  Shallan  AI,  Smejkal  P,  Corban  M, et  al., 2014, Cost-  27(3):035004. DOI 10.1088/1361-6439/aa53ed.
               effective Three-dimensional Printing of Visibly Transparent   42.  Kirk CG, 1961, Toy Building Brick. Google Patents.
               Microchips Within Minutes. Anal Chem, 86(6):3124-30. DOI   43.  Yuen  PK,  2016,  A  Reconfigurable  Stick-n-play  Modular
               10.1021/ac4041857.                                  Microfluidic  System  using  Magnetic  Interconnects.  Lab
           29.  Monaghan  T,  Harding  MJ,  Harris  RA, et  al.,  2016,   Chip, 16(19):3700-7. DOI 10.1039/c6lc00741d.
               Customisable  3D  Printed  Microfluidics  for  Integrated   44.  Tumbleston JR, Shirvanyants D, Ermoshkin N, et al., 2015,
               Analysis and Optimisation. Lab Chip, 16(17):3362-73. DOI   Continuous  Liquid  Interface  Production  of  3D  Objects.
               10.1039/c6lc00562d.                                 Science, 347(6228):1349-52. DOI 10.1126/science.aaa2397.
           30.  Cabot JM, Fuguet E, Rosés M, et al., 2015, Novel Instrument   45.  Beauchamp MJ, Nordin GP, Woolley AT, 2017, Moving from
               for  Automated  p  K  a  Determination  by  Internal  Standard   Millifluidic to Truly Microfluidic sub-100-μm Cross-section
               Capillary Electrophoresis. Anal Chem, 87(12):6165-72. DOI   3D Printed  Devices.  Anal  Bioanal  Chem,  409(18):4311-9.
               10.1021/acs.analchem.5b00845.                       DOI 10.1007/s00216-017-0398-3.
           31.  Gelber  MK,  Bhargava  R,  2015,  Monolithic  Multilayer   46.  Mazutis  L,  Gilbert  J,  Ung  WL,  et  al.,  2013,  Single-cell
               Microfluidics via Sacrificial Molding of 3D-printed Isomalt.   Analysis and Sorting using Droplet-based Microfluidics. Nat
               Lab Chip, 15(7):1736-41. DOI 10.1039/c4lc01392a.    Protoc, 8(5):870. DOI 10.1038/nprot.2013.046.
           32.  Anderson KB, Lockwood SY, Martin RS, et al., 2013, A 3D   47.  ASIGA.  Available  from:  https://www.asiga.com/products/
               Printed Fluidic Device that Enables Integrated Features. Anal   printers/pico. [Last retrieved on 2019 Jun 10].
               Chem, 85(12):5622-6. DOI 10.1021/ac4009594.     48.  Lee  JM,  Zhang  M,  Yeong  WY,  2016,  Characterization

           72                          International Journal of Bioprinting (2019)–Volume 5, Issue 2
   71   72   73   74   75   76   77   78   79   80   81