Page 77 - IJB-5-2
        P. 77
     Zhang Y
               and  Evaluation  of  3D  Printed  Microfluidic  Chip  for  Cell   Characterization of Gels with Integrated Channels using 3D
               Processing. Microfluid Nanofluidics, 20(1):5. DOI 10.1007/  Printing  with  Microfluidic  Nozzle  for  Tissue  Engineering
               s10404-015-1688-8.                                  Applications. Biomed Microdevices, 18(1):17. DOI 10.1007/
           49.  Li F, Macdonald NP, Guijt RM, et al., 2019, Increasing the   s10544-016-0042-6.
               Functionalities  of  3D  Printed  Microchemical  Devices  by   58.  Ghorbanian  S,  Qasaimeh  MA,  Akbari  M, et  al., 2014,
               Single  Material,  Multimaterial,  and  Print-pause-print  3D   Microfluidic  Direct  Writer  with  Integrated  Declogging
               Printing. Lab Chip, 19(1):35-49. DOI 10.1039/c8lc00826d.  Mechanism for Fabricating Cell-laden Hydrogel Constructs.
           50.  Colosi C, Shin SR, Manoharan V, et al., 2016, Microfluidic   Biomed Microdevices,  16(3):387-95.  DOI  10.1007/s10544-
               Bioprinting  of  Heterogeneous  3D  Tissue  Constructs  using   014-9842-8.
               Low-viscosity  Bioink.  Adv  Mater,  28(4):677-84.  DOI   59.  Hardin JO, Ober TJ, Valentine AD, et al., 2015, Microfluidic
               10.1002/adma.201503310.                             Printheads for Multimaterial 3D Printing of Viscoelastic Inks.
           51.  Serex  L,  Bertsch  A,  Renaud  P,  2018,  Microfluidics:   Adv Mater, 27(21):3279-84. DOI 10.1002/adma.201570145.
               A  New  Layer  of  Control  for  Extrusion-based  3D  Printing.   60.  Wei D, Sun J, Bolderson J, et al., 2017, Continuous Fabrication
               Micromachines, 9(2):86. DOI 10.3390/mi9020086.      and Assembly of Spatial Cell-laden Fibers for a Tissue-like
           52.  Hansen  CJ,  Saksena  R,  Kolesky  DB, et  al., 2013, High-  Construct via a Photolithographic-based Microfluidic Chip.
               throughput  Printing  via  Microvascular  Multinozzle Arrays.   ACS Appl Mater Interfaces, 9(17):14606-17. DOI 10.1021/
               Adv Mater, 25(1):96-102. DOI 10.1002/adma.201370002.  acsami.7b00078.
           53.  Ozawa F, Okitsu T, Takeuchi S, 2017, Improvement in the   61.  Leng  L,  McAllister  A,  Zhang  B, et  al., 2012, Mosaic
               Mechanical  Properties  of  Cell-laden  Hydrogel  Microfibers   Hydrogels: One-step Formation of Multiscale Soft Materials.
               using Interpenetrating Polymer Networks. ACS Biomater Sci   Adv Mater, 24(27):3650-8. DOI 10.1002/adma.201290166.
               Eng, 3(3):392-8. DOI 10.1021/acsbiomaterials.6b00619.  62.  Ober  TJ,  Foresti  D,  Lewis  JA,  2015,  Active  Mixing  of
           54.  Gao Q, He Y, Fu JZ, et al., 2015, Coaxial Nozzle-assisted   Complex  Fluids  at  the  Microscale.  Proc  Natl  Acad  Sci,
               3D  Bioprinting  with  Built-in  Microchannels  for  Nutrients   112(40):12293-8. DOI 10.1073/pnas.1509224112.
               Delivery.   Biomaterials,   61:203-15.   DOI   10.1016/j.  63.  Collino RR, Ray TR, Fleming RC, et al., 2016, Deposition
               biomaterials.2015.05.031.                           of  Ordered  Two-phase  Materials  using  Microfluidic  Print
           55.  Colosi  C,  Costantini  M,  Latini  R, et  al., 2014, Rapid   Nozzles with Acoustic Focusing. Extreme Mech Lett, 8:96-
               Prototyping  of  Chitosan-coated Alginate  Scaffolds  through   106. DOI 10.1016/j.eml.2016.04.003.
               the use of a 3D Fiber Deposition Technique. J Mater Chem B,   64.  Li X, Zhang JM, Yi X, et al., 2018, Multimaterial Microfluidic
               2(39):6779-91. DOI 10.1039/c4tb00732h.              3D Printing of Textured Composites with Liquid Inclusions.
           56.  Gao  Q,  Liu  Z,  Lin  Z, et  al., 2017, 3D Bioprinting  of   Adv Sci, 6:1800730. DOI 10.1002/advs.201800730.
               Vessel-like  Structures  with  Multilevel  Fluidic  Channels.   65.  Visser CW, Kamperman T, Karbaat LP, et al., 2018, In-air
               ACS Biomater Sci Eng,  3(3):399-408.  DOI  10.1021/  Microfluidics  Enables  Rapid  Fabrication  of  Emulsions,
               acsbiomaterials.6b00643.                            Suspensions,  and  3D  Modular  (bio)  Materials.  Sci Adv,
           57.  Attalla R, Ling C, Selvaganapathy P, 2016, Fabrication and   4(1):eaao1175. DOI 10.1126/sciadv.aao1175.
                                       International Journal of Bioprinting (2019)–Volume 5, Issue 2        73





