Page 77 - IJB-5-2
P. 77
Zhang Y
and Evaluation of 3D Printed Microfluidic Chip for Cell Characterization of Gels with Integrated Channels using 3D
Processing. Microfluid Nanofluidics, 20(1):5. DOI 10.1007/ Printing with Microfluidic Nozzle for Tissue Engineering
s10404-015-1688-8. Applications. Biomed Microdevices, 18(1):17. DOI 10.1007/
49. Li F, Macdonald NP, Guijt RM, et al., 2019, Increasing the s10544-016-0042-6.
Functionalities of 3D Printed Microchemical Devices by 58. Ghorbanian S, Qasaimeh MA, Akbari M, et al., 2014,
Single Material, Multimaterial, and Print-pause-print 3D Microfluidic Direct Writer with Integrated Declogging
Printing. Lab Chip, 19(1):35-49. DOI 10.1039/c8lc00826d. Mechanism for Fabricating Cell-laden Hydrogel Constructs.
50. Colosi C, Shin SR, Manoharan V, et al., 2016, Microfluidic Biomed Microdevices, 16(3):387-95. DOI 10.1007/s10544-
Bioprinting of Heterogeneous 3D Tissue Constructs using 014-9842-8.
Low-viscosity Bioink. Adv Mater, 28(4):677-84. DOI 59. Hardin JO, Ober TJ, Valentine AD, et al., 2015, Microfluidic
10.1002/adma.201503310. Printheads for Multimaterial 3D Printing of Viscoelastic Inks.
51. Serex L, Bertsch A, Renaud P, 2018, Microfluidics: Adv Mater, 27(21):3279-84. DOI 10.1002/adma.201570145.
A New Layer of Control for Extrusion-based 3D Printing. 60. Wei D, Sun J, Bolderson J, et al., 2017, Continuous Fabrication
Micromachines, 9(2):86. DOI 10.3390/mi9020086. and Assembly of Spatial Cell-laden Fibers for a Tissue-like
52. Hansen CJ, Saksena R, Kolesky DB, et al., 2013, High- Construct via a Photolithographic-based Microfluidic Chip.
throughput Printing via Microvascular Multinozzle Arrays. ACS Appl Mater Interfaces, 9(17):14606-17. DOI 10.1021/
Adv Mater, 25(1):96-102. DOI 10.1002/adma.201370002. acsami.7b00078.
53. Ozawa F, Okitsu T, Takeuchi S, 2017, Improvement in the 61. Leng L, McAllister A, Zhang B, et al., 2012, Mosaic
Mechanical Properties of Cell-laden Hydrogel Microfibers Hydrogels: One-step Formation of Multiscale Soft Materials.
using Interpenetrating Polymer Networks. ACS Biomater Sci Adv Mater, 24(27):3650-8. DOI 10.1002/adma.201290166.
Eng, 3(3):392-8. DOI 10.1021/acsbiomaterials.6b00619. 62. Ober TJ, Foresti D, Lewis JA, 2015, Active Mixing of
54. Gao Q, He Y, Fu JZ, et al., 2015, Coaxial Nozzle-assisted Complex Fluids at the Microscale. Proc Natl Acad Sci,
3D Bioprinting with Built-in Microchannels for Nutrients 112(40):12293-8. DOI 10.1073/pnas.1509224112.
Delivery. Biomaterials, 61:203-15. DOI 10.1016/j. 63. Collino RR, Ray TR, Fleming RC, et al., 2016, Deposition
biomaterials.2015.05.031. of Ordered Two-phase Materials using Microfluidic Print
55. Colosi C, Costantini M, Latini R, et al., 2014, Rapid Nozzles with Acoustic Focusing. Extreme Mech Lett, 8:96-
Prototyping of Chitosan-coated Alginate Scaffolds through 106. DOI 10.1016/j.eml.2016.04.003.
the use of a 3D Fiber Deposition Technique. J Mater Chem B, 64. Li X, Zhang JM, Yi X, et al., 2018, Multimaterial Microfluidic
2(39):6779-91. DOI 10.1039/c4tb00732h. 3D Printing of Textured Composites with Liquid Inclusions.
56. Gao Q, Liu Z, Lin Z, et al., 2017, 3D Bioprinting of Adv Sci, 6:1800730. DOI 10.1002/advs.201800730.
Vessel-like Structures with Multilevel Fluidic Channels. 65. Visser CW, Kamperman T, Karbaat LP, et al., 2018, In-air
ACS Biomater Sci Eng, 3(3):399-408. DOI 10.1021/ Microfluidics Enables Rapid Fabrication of Emulsions,
acsbiomaterials.6b00643. Suspensions, and 3D Modular (bio) Materials. Sci Adv,
57. Attalla R, Ling C, Selvaganapathy P, 2016, Fabrication and 4(1):eaao1175. DOI 10.1126/sciadv.aao1175.
International Journal of Bioprinting (2019)–Volume 5, Issue 2 73

