Page 101 - IJB-10-5
P. 101

International Journal of Bioprinting                            dECM bioink for 3D musculoskeletal tissue reg.




               for auricular cartilage tissue engineering.  Acta Biomater.   148. Sung K, Patel NR, Ashammakhi N, Nguyen KL.
               2021;121:193-203.                                  3-Dimensional  bioprinting of  cardiovascular  tissues:
               doi: 10.1016/j.actbio.2020.11.029                  emerging technology.  JACC Basic Transl Sci.  2021;6:
                                                                  467-482.
            137. Lu J, Huang J, Jin J, et al. The design and characterization of      doi: 10.1016/j.jacbts.2020.12.006
               a strong bio-ink for meniscus regeneration. Int J Bioprint.
               2022;8(4):600.                                  149. Sanz-Fraile H, Herranz-Diez C, Ulldemolins A, et
               doi: 10.18063/ijb.v8i4.600                         al. Characterization of bioinks prepared via gelifying
                                                                  extracellular matrix from decellularized porcine myocardia.
            138. Nouri Barkestani M, Naserian S, Uzan G, Shamdani S.   Gels. 2023;9(9):745.
               Post-decellularization techniques ameliorate cartilage      doi: 10.3390/gels9090745
               decellularization process for tissue engineering applications.
               J Tissue Eng. 2021;12:2041731420983562.         150. Ostrovidov S, Hosseini V, Ahadian S, et al. Skeletal muscle
               doi: 10.1177/2041731420983562                      tissue engineering: methods to form skeletal myotubes
                                                                  and their applications.  Tissue Eng Part B Rev. 2014;20(5):
            139. McInnes AD, Moser MAJ, Chen X. Preparation and use of   403-436.
               decellularized extracellular matrix for tissue engineering. J      doi: 10.1089/ten.TEB.2013.0534
               Funct Biomater. 2022;13(4):240.
               doi: 10.3390/jfb13040240                        151. Behre A, Tashman JW, Dikyol C, et al. 3D bioprinted patient-
                                                                  specific extracellular matrix scaffolds for soft tissue defects.
            140. Al-Hakim Khalak F, García-Villén F, Ruiz-Alonso S, Pedraz   Adv Healthc Mater. 2022;11(24):e2200866.
               JL, Saenz-Del-Burgo L. Decellularized extracellular matrix-     doi: 10.1002/adhm.202200866
               based bioinks for tendon regeneration in three-dimensional
               bioprinting. Int J Mol Sci. 2022;23(21):12930.  152. Wang D, Zhang X, Huang S, et al. Engineering multi-tissue
               doi: 10.3390/ijms232112930                         units for regenerative medicine: bone-tendon-muscle units
                                                                  of the rotator cuff. Biomaterials. 2021;272:120789.
            141. Li S, Liu Z, Gao X, et al. Preparation and properties of a 3D      doi: 10.1016/j.biomaterials.2021.120789
               printed nHA/PLA bone tissue engineering scaffold loaded
               with a β-CD-CHX combined dECM hydrogel.  RSC Adv.   153. Yoshimoto  Y,  Oishi  Y.  Mechanisms  of  skeletal  muscle-
               2024;14:9848-9859.                                 tendon development and regeneration/healing as potential
               doi: 10.1039/d4ra00261j                            therapeutic targets. Pharmacol Ther. 2023;243:108357.
                                                                  doi: 10.1016/j.pharmthera.2023.108357
            142. Hussain Z, Ding P, Zhang L, Zhang Y. Multifaceted tannin
               crosslinked bioinspired dECM decorated nanofibers   154. Xu Y, Murrell GA. The basic science of tendinopathy. Clin
               modulating cell-scaffold biointerface for tympanic   Orthop Relat Res. 2008;466:1528-1538.
               membrane  perforation  bioengineering.  Biomed Mater      doi: 10.1007/s11999-008-0286-4
               2022;17(3):1.                                   155. Andres BM, Murrell GA. Treatment of tendinopathy: what
               doi: 10.1088/1748-605X/ac6125                      works, what does not, and what is on the horizon.  Clin
            143. Wu J, Han Y, Fu Q, et al. Application of tissue-derived bioink   Orthop Relat Res. 2008;466:1539-1554.
               for articular cartilage lesion repair. Chem Eng J. 2022;450:8-9.     doi: 10.1007/s11999-008-0260-1
               doi: 10.1016/j.cej.2022.138292                  156. Lui PP. Stem cell technology for tendon regeneration:
            144. Yoo SJ, Hussein N, Peel B, et al. 3D modeling and printing in   current status, challenges, and future research directions.
               congenital heart surgery: entering the stage of maturation.   Stem Cells Cloning. 2015;8:163-174.
               Front Pediatr. 2021;9:621672.                      doi: 10.2147/sccaa.S60832
               doi: 10.3389/fped.2021.621672                   157. Migliorini F, Tingart M, Maffulli N. Progress with stem cell
            145. Zhe M, Wu X, Yu P, et al. Recent advances in decellularized   therapies for tendon tissue regeneration. Expert Opin Biol
               extracellular matrix-based bioinks for 3D bioprinting in   Ther. 2020;20:1373-1379.
               tissue engineering. Materials (Basel). 2023;16(8):3197.     doi: 10.1080/14712598.2020.1786532
               doi: 10.3390/ma16083197                         158. No YJ, Castilho M, Ramaswamy Y, Zreiqat, H. Role of
            146. Xiang Y, Miller K, Guan J, Kiratitanaporn W, Tang M, Chen   biomaterials and controlled architecture on tendon/ligament
               S. 3D bioprinting of complex tissues in vitro: state-of-the-art   repair and regeneration. Adv Mater. 2020;32:e1904511.
               and future perspectives. Arch Toxicol. 2022;96(3):691-710.     doi: 10.1002/adma.201904511
               doi: 10.1007/s00204-021-03212-y                 159. Liu Y., Ramanath HS, Wang DA. Tendon tissue engineering
                                                                  using scaffold enhancing strategies.  Trends Biotechnol.
            147. Jang J, Kim TG, Kim BS, Kim SW, Kwon SM, Cho
               DW. Tailoring mechanical properties of decellularized   2008;26:201-209.
               extracellular matrix bioink by vitamin B2-induced photo-     doi: 10.1016/j.tibtech.2008.01.003
               crosslinking. Acta Biomater. 2016;33:88-95.     160. Anjum S, Li T, Saeed M, Ao Q. Exploring polysaccharide
               doi: 10.1016/j.actbio.2016.01.013                  and protein-enriched decellularized matrix scaffolds for


            Volume 10 Issue 5 (2024)                        93                                doi: 10.36922/ijb.3418
   96   97   98   99   100   101   102   103   104   105   106