Page 101 - IJB-10-5
P. 101
International Journal of Bioprinting dECM bioink for 3D musculoskeletal tissue reg.
for auricular cartilage tissue engineering. Acta Biomater. 148. Sung K, Patel NR, Ashammakhi N, Nguyen KL.
2021;121:193-203. 3-Dimensional bioprinting of cardiovascular tissues:
doi: 10.1016/j.actbio.2020.11.029 emerging technology. JACC Basic Transl Sci. 2021;6:
467-482.
137. Lu J, Huang J, Jin J, et al. The design and characterization of doi: 10.1016/j.jacbts.2020.12.006
a strong bio-ink for meniscus regeneration. Int J Bioprint.
2022;8(4):600. 149. Sanz-Fraile H, Herranz-Diez C, Ulldemolins A, et
doi: 10.18063/ijb.v8i4.600 al. Characterization of bioinks prepared via gelifying
extracellular matrix from decellularized porcine myocardia.
138. Nouri Barkestani M, Naserian S, Uzan G, Shamdani S. Gels. 2023;9(9):745.
Post-decellularization techniques ameliorate cartilage doi: 10.3390/gels9090745
decellularization process for tissue engineering applications.
J Tissue Eng. 2021;12:2041731420983562. 150. Ostrovidov S, Hosseini V, Ahadian S, et al. Skeletal muscle
doi: 10.1177/2041731420983562 tissue engineering: methods to form skeletal myotubes
and their applications. Tissue Eng Part B Rev. 2014;20(5):
139. McInnes AD, Moser MAJ, Chen X. Preparation and use of 403-436.
decellularized extracellular matrix for tissue engineering. J doi: 10.1089/ten.TEB.2013.0534
Funct Biomater. 2022;13(4):240.
doi: 10.3390/jfb13040240 151. Behre A, Tashman JW, Dikyol C, et al. 3D bioprinted patient-
specific extracellular matrix scaffolds for soft tissue defects.
140. Al-Hakim Khalak F, García-Villén F, Ruiz-Alonso S, Pedraz Adv Healthc Mater. 2022;11(24):e2200866.
JL, Saenz-Del-Burgo L. Decellularized extracellular matrix- doi: 10.1002/adhm.202200866
based bioinks for tendon regeneration in three-dimensional
bioprinting. Int J Mol Sci. 2022;23(21):12930. 152. Wang D, Zhang X, Huang S, et al. Engineering multi-tissue
doi: 10.3390/ijms232112930 units for regenerative medicine: bone-tendon-muscle units
of the rotator cuff. Biomaterials. 2021;272:120789.
141. Li S, Liu Z, Gao X, et al. Preparation and properties of a 3D doi: 10.1016/j.biomaterials.2021.120789
printed nHA/PLA bone tissue engineering scaffold loaded
with a β-CD-CHX combined dECM hydrogel. RSC Adv. 153. Yoshimoto Y, Oishi Y. Mechanisms of skeletal muscle-
2024;14:9848-9859. tendon development and regeneration/healing as potential
doi: 10.1039/d4ra00261j therapeutic targets. Pharmacol Ther. 2023;243:108357.
doi: 10.1016/j.pharmthera.2023.108357
142. Hussain Z, Ding P, Zhang L, Zhang Y. Multifaceted tannin
crosslinked bioinspired dECM decorated nanofibers 154. Xu Y, Murrell GA. The basic science of tendinopathy. Clin
modulating cell-scaffold biointerface for tympanic Orthop Relat Res. 2008;466:1528-1538.
membrane perforation bioengineering. Biomed Mater doi: 10.1007/s11999-008-0286-4
2022;17(3):1. 155. Andres BM, Murrell GA. Treatment of tendinopathy: what
doi: 10.1088/1748-605X/ac6125 works, what does not, and what is on the horizon. Clin
143. Wu J, Han Y, Fu Q, et al. Application of tissue-derived bioink Orthop Relat Res. 2008;466:1539-1554.
for articular cartilage lesion repair. Chem Eng J. 2022;450:8-9. doi: 10.1007/s11999-008-0260-1
doi: 10.1016/j.cej.2022.138292 156. Lui PP. Stem cell technology for tendon regeneration:
144. Yoo SJ, Hussein N, Peel B, et al. 3D modeling and printing in current status, challenges, and future research directions.
congenital heart surgery: entering the stage of maturation. Stem Cells Cloning. 2015;8:163-174.
Front Pediatr. 2021;9:621672. doi: 10.2147/sccaa.S60832
doi: 10.3389/fped.2021.621672 157. Migliorini F, Tingart M, Maffulli N. Progress with stem cell
145. Zhe M, Wu X, Yu P, et al. Recent advances in decellularized therapies for tendon tissue regeneration. Expert Opin Biol
extracellular matrix-based bioinks for 3D bioprinting in Ther. 2020;20:1373-1379.
tissue engineering. Materials (Basel). 2023;16(8):3197. doi: 10.1080/14712598.2020.1786532
doi: 10.3390/ma16083197 158. No YJ, Castilho M, Ramaswamy Y, Zreiqat, H. Role of
146. Xiang Y, Miller K, Guan J, Kiratitanaporn W, Tang M, Chen biomaterials and controlled architecture on tendon/ligament
S. 3D bioprinting of complex tissues in vitro: state-of-the-art repair and regeneration. Adv Mater. 2020;32:e1904511.
and future perspectives. Arch Toxicol. 2022;96(3):691-710. doi: 10.1002/adma.201904511
doi: 10.1007/s00204-021-03212-y 159. Liu Y., Ramanath HS, Wang DA. Tendon tissue engineering
using scaffold enhancing strategies. Trends Biotechnol.
147. Jang J, Kim TG, Kim BS, Kim SW, Kwon SM, Cho
DW. Tailoring mechanical properties of decellularized 2008;26:201-209.
extracellular matrix bioink by vitamin B2-induced photo- doi: 10.1016/j.tibtech.2008.01.003
crosslinking. Acta Biomater. 2016;33:88-95. 160. Anjum S, Li T, Saeed M, Ao Q. Exploring polysaccharide
doi: 10.1016/j.actbio.2016.01.013 and protein-enriched decellularized matrix scaffolds for
Volume 10 Issue 5 (2024) 93 doi: 10.36922/ijb.3418

