Page 97 - IJB-10-5
P. 97
International Journal of Bioprinting dECM bioink for 3D musculoskeletal tissue reg.
46. Roth EA, Xu T, Das M, Gregory C, Hickman JJ, Boland 59. Paruli EI, Montagna V, García-Soto M, Haupt K, Gonzato
T. Inkjet printing for high-throughput cell patterning. C. A general photoiniferter approach to the surface
Biomaterials. 2004;25(17):3707-3715. functionalization of acrylic and methacrylic structures
doi: 10.1016/j.biomaterials.2003.10.052 written by two-photon stereolithography. Nanoscale.
2023;15:2860-2870.
47. Cui X, Gao G, Qiu Y. Accelerated myotube formation doi: 10.1039/d2nr06627k
using bioprinting technology for biosensor applications.
Biotechnol Lett. 2013;35:315-321. 60. Li W, Wang M, Ma H, et al. Stereolithography apparatus
doi: 10.1007/s10529-012-1087-0 and digital light processing-based 3D bioprinting for tissue
fabrication. iScience. 2023;26:106039.
48. Gao Q, He Y, Fu JZ, Liu A, Ma L. Coaxial nozzle-assisted doi: 10.1016/j.mser.2017.07.001
3D bioprinting with built-in microchannels for nutrients
delivery. Biomaterials. 2015;61:203-215. 61. Gauvin R, Chen YC, Lee JW, et al. Microfabrication of complex
doi: 10.1016/j.biomaterials.2015.05.031 porous tissue engineering scaffolds using 3D projection
stereolithography. Biomaterials. 2012;33(15):3824-3834.
49. Ihalainen P, Määttänen A, Sandler N. Printing technologies doi: 10.1016/j.biomaterials.2012.01.048
for biomolecule and cell-based applications. Int J Pharm.
2015;494:585-592. 62. Melchels FP, Feijen J, Grijpma DW. A review on
doi: 10.1016/j.ijpharm.2015.02.033 stereolithography and its applications in biomedical
engineering. Biomaterials 2010;31:6121-6130.
50. Kim BS, Das S, Jang J, Cho DW. Decellularized extracellular doi: 10.1016/j.biomaterials.2010.04.050
matrix-based bioinks for engineering tissue- and organ-specific
microenvironments. Chem Rev. 2020;120:10608-10661. 63. Peng W, Unutmaz D, Ozbolat IT. Bioprinting towards
doi: 10.1021/acs.chemrev.9b00808 physiologically relevant tissue models for pharmaceutics.
Trends Biotechnol. 2016;34:722-732.
51. Wang Y, Yuan X, Yao B, Zhu S, Zhu P, Huang S. Tailoring doi: 10.1016/j.tibtech.2016.05.013
bioinks of extrusion-based bioprinting for cutaneous wound
healing. Bioact Mater. 2022;17:178-194. 64. Kara A, Distler T, Polley C. et al. 3D printed gelatin/
doi: 10.1016/j.bioactmat.2022.01.024. decellularized bone composite scaffolds for bone
tissue engineering: fabrication, characterization and
52. Mironov V. Printing technology to produce living tissue. cytocompatibility study. Mater Today Bio. 2022;15:100309.
Expert Opin Biol Ther. 2003;3:701-704. doi: 10.1016/j.mtbio.2022.100309
doi: 10.1517/14712598.3.5.701
65. Isaeva EV, Beketov EE, Demyashkin GA, et al. Cartilage
53. Chrisey DB. Materials processing: the power of direct formation in vivo using high concentration collagen-based
writing. Science. 2000;289:879-881. bioink with MSC and decellularized ECM granules. Int J Mol
doi: 10.1126/science.289.5481.879 Sci. 2022;23(5):2703.
54. Bohandy J, Kim BF, Adrian FJ. Metal deposition from a doi: 10.3390/ijms23052703
supported metal film using an excimer laser. J Appl Phys. 66. Sorkio A, Koch L, Koivusalo L, et al. Human stem cell based
1986;60:1538-1539. corneal tissue mimicking structures using laser-assisted
doi: 10.1063/1.337287 3D bioprinting and functional bioinks. Biomaterials.
55. Catros S, Fricain JC, Guillotin B, et al. Laser-assisted 2018;171:57-71.
bioprinting for creating on-demand patterns of human doi: 10.1016/j.biomaterials.2018.04.034
osteoprogenitor cells and nano-hydroxyapatite. 67. Koch L, Deiwick A, Chichkov B. Capillary-like formations
Biofabrication. 2011;3(2):025001. of endothelial cells in defined patterns generated by laser
doi: 10.1088/1758-5082/3/2/025001 bioprinting. Micromachines (Basel). 2021;12(12):1538.
56. Colina M, Serra P, Fernández-Pradas JM, Sevilla L, Morenza doi: 10.3390/mi12121538
JL. DNA deposition through laser induced forward transfer. 68. Yu C, Ma X, Zhu W, et al. Scanningless and continuous
Biosens Bioelectron. 2005;20:1638-1642. 3D bioprinting of human tissues with decellularized
doi: 10.1016/j.bios.2004.08.047 extracellular matrix. Biomaterials. 2019;194:1-13.
57. Dinca V, Kasotakis E, Catherine J, et al.. Directed three- doi: 10.1016/j.biomaterials.2018.12.009
dimensional patterning of self-assembled peptide fibrils. 69. Chen P, Zheng L, Wang Y, et al. Desktop-stereolithography
Nano Lett. 2008;8(2):538-543. 3D printing of a radially oriented extracellular matrix/
doi: 10.1021/nl072798r mesenchymal stem cell exosome bioink for osteochondral
58. Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting defect regeneration. Theranostics. 2019;9(9):2439-2459.
for engineering complex tissues. Biotechnol Adv. 2016;34: doi: 10.7150/thno.31017
422-434. 70. Choudhury D, Tun HW, Wang T, Naing MW. Organ-
doi: 10.1016/j.biotechadv.2015.12.011 derived decellularized extracellular matrix: a game changer
Volume 10 Issue 5 (2024) 89 doi: 10.36922/ijb.3418

