Page 100 - IJB-10-5
P. 100

International Journal of Bioprinting                            dECM bioink for 3D musculoskeletal tissue reg.




            116. Abaci A, Guvendiren M. Designing decellularized   extracellular matrix bio-ink in extrusion-based 3D cell
               extracellular matrix-based bioinks for 3D bioprinting. Adv   printing. Biofabrication. 2020;12:045011.
               Healthc Mater. 2020;9:e2000734.                    doi: 10.1088/1758-5090/aba411
               doi: 10.1002/adhm.202000734
                                                               127. Zhao F, Cheng J, Zhang J, et al. Comparison of three different
            117. Giraldo-Gomez DM, Leon-Mancilla B, Del Prado-    acidic solutions in tendon decellularized extracellular matrix
               Audelo  ML,  et  al.  Trypsin  as  enhancement  in  cyclical   bio-ink fabrication for 3D cell printing.  Acta Biomater.
               tracheal decellularization: morphological and biophysical   2021;131:262-275.
               characterization.  Mater Sci Eng C Mater Biol Appl.      doi: 10.1016/j.actbio.2021.06.026
               2016;59:930-937.                                128. Zhang X, Song W, Han K,  et al. Three-dimensional
               doi: 10.1016/j.msec.2015.10.094
                                                                  bioprinting of a structure-, composition-, and mechanics-
            118. Yang  Y, Lin H,  Shen  H, Wang  B,  Lei  G, Tuan  RS.   graded biomimetic scaffold coated with specific decellularized
               Mesenchymal stem cell-derived extracellular matrix   extracellular matrix to improve the tendon-to-bone healing.
               enhances chondrogenic phenotype of and cartilage   ACS Appl Mater Interfaces. 2023;15:28964-28980.
               formation by encapsulated chondrocytes in vitro and in      doi: 10.1021/acsami.3c03793
               vivo. Acta Biomater. 2018;69:71-82.             129. Lee J, Hong J, Kim W, Kim GH. Bone-derived dECM/
               doi: 10.1016/j.actbio.2017.12.043
                                                                  alginate bioink for fabricating a 3D  cell-laden mesh
            119. Liguori GR, Liguori TTA, de Moraes SR, et al. Molecular   structure for bone tissue engineering.  Carbohydr Polym.
               and biomechanical clues from cardiac tissue decellularized   2020;250:116914.
               extracellular matrix drive stromal cell plasticity. Front Bioeng      doi: 10.1016/j.carbpol.2020.116914
               Biotechnol. 2020;8:520.                         130. Parthiban SP, Athirasala A, Tahayeri A,  et al. BoneMA-
               doi: 10.3389/fbioe.2020.00520
                                                                  synthesis and characterization of a methacrylated bone-
            120. Jang J, Park HJ, Kim SW, et al. 3D printed complex tissue   derived hydrogel for bioprinting ofin-vitrovascularized
               construct using stem cell-laden decellularized extracellular   tissue constructs.  Biofabrication. 2021;13(3):10.1088/1758-
               matrix bioinks for cardiac repair.  Biomaterials. 2017;112:   5090/abb11f..
               264-274.                                           doi: 10.1088/1758-5090/abb11f
               doi: 10.1016/j.biomaterials.2016.10.026
                                                               131. Zhang X, Liu Y, Zuo Q, et al. 3D bioprinting of biomimetic
            121. Wang  X,  Pierre  V,  Liu  C,  Senapati  S,  Park  PS,  Senyo  SE.   bilayered scaffold consisting of decellularized extracellular
               Exogenous extracellular matrix proteins decrease cardiac   matrix  and  silk  fibroin  for  osteochondral  repair.
               fibroblast activation in stiffening microenvironment   Int J Bioprint. 2021;7(4):401.
               through CAPG. J Mol Cell Cardiol. 2021;159:105-119.     doi: 10.18063/ijb.v7i4.401
               doi: 10.1016/j.yjmcc.2021.06.001
                                                               132. Hwangbo H, Lee J, Kim G. Mechanically and biologically
            122. Mesquita FCP, Morrissey J, Lee P-F, et al. Cues from human   enhanced 3D-printed HA/PLLA/dECM biocomposites
               atrial extracellular matrix enrich the atrial differentiation   for bone tissue engineering.  Int J Biol Macromol. 2022;
               of human induced pluripotent stem cell-derived     218:9-21.
               cardiomyocytes. Biomater Sci. 2021;9:3737-3749.     doi: 10.1016/j.ijbiomac.2022.07.040
               doi: 10.1039/d0bm01686a
                                                               133. Zhu S, Chen P, Chen Y, Li M, Chen C, Lu H. 3D-printed
            123. Choi YJ, Park SJ, Yi H-G, et al. Muscle-derived extracellular   extracellular matrix/polyethylene glycol diacrylate hydrogel
               matrix on sinusoidal wavy surfaces synergistically promotes   incorporating  the  anti-inflammatory  phytomolecule
               myogenic differentiation and maturation. J Mater Chem B.   honokiol  for  regeneration of  osteochondral  defects.  Am J
               2018;6:5530-5539.                                  Sports Med. 2020;48(11):2808-2818.
               doi: 10.1039/c8tb01475b                            doi: 10.1177/0363546520941842
            124. Choi YJ, Jun YJ, Kim DY, et al. A 3D cell printed muscle   134. Chae S, Lee SS, Choi YJ, et al. 3D cell-printing of
               construct with tissue-derived bioink for the treatment   biocompatible and functional meniscus constructs using
               of volumetric muscle loss.  Biomaterials. 2019;206:   meniscus-derived bioink. Biomaterials. 2021;267:120466.
               160-169.                                           doi: 10.1016/j.biomaterials.2020.120466
               doi: 10.1016/j.biomaterials.2019.03.036
                                                               135. Setayeshmehr M, Hafeez S, van Blitterswijk C, Moroni L,
            125. Kim W, Lee H, Lee J,  et al. Efficient myotube formation   Mota C, Baker MB. Bioprinting via a dual-gel bioink based
               in 3D bioprinted tissue construct by biochemical and   on poly(vinyl alcohol) and solubilized extracellular matrix
               topographical cues. Biomaterials. 2020;230:119632.  towards cartilage engineering. Int J Mol Sci. 2021;22(8):3901.
               doi: 10.1016/j.biomaterials.2019.119632            doi: 10.3390/ijms22083901
            126. Zhao F, Cheng J, Sun M, et al. Digestion degree is a key factor   136. Visscher DO, Lee H, van Zuijlen PPM, et al. A photo-
               to regulate the printability of pure tendon decellularized   crosslinkable cartilage-derived extracellular matrix bioink



            Volume 10 Issue 5 (2024)                        92                                doi: 10.36922/ijb.3418
   95   96   97   98   99   100   101   102   103   104   105