Page 100 - IJB-10-5
P. 100
International Journal of Bioprinting dECM bioink for 3D musculoskeletal tissue reg.
116. Abaci A, Guvendiren M. Designing decellularized extracellular matrix bio-ink in extrusion-based 3D cell
extracellular matrix-based bioinks for 3D bioprinting. Adv printing. Biofabrication. 2020;12:045011.
Healthc Mater. 2020;9:e2000734. doi: 10.1088/1758-5090/aba411
doi: 10.1002/adhm.202000734
127. Zhao F, Cheng J, Zhang J, et al. Comparison of three different
117. Giraldo-Gomez DM, Leon-Mancilla B, Del Prado- acidic solutions in tendon decellularized extracellular matrix
Audelo ML, et al. Trypsin as enhancement in cyclical bio-ink fabrication for 3D cell printing. Acta Biomater.
tracheal decellularization: morphological and biophysical 2021;131:262-275.
characterization. Mater Sci Eng C Mater Biol Appl. doi: 10.1016/j.actbio.2021.06.026
2016;59:930-937. 128. Zhang X, Song W, Han K, et al. Three-dimensional
doi: 10.1016/j.msec.2015.10.094
bioprinting of a structure-, composition-, and mechanics-
118. Yang Y, Lin H, Shen H, Wang B, Lei G, Tuan RS. graded biomimetic scaffold coated with specific decellularized
Mesenchymal stem cell-derived extracellular matrix extracellular matrix to improve the tendon-to-bone healing.
enhances chondrogenic phenotype of and cartilage ACS Appl Mater Interfaces. 2023;15:28964-28980.
formation by encapsulated chondrocytes in vitro and in doi: 10.1021/acsami.3c03793
vivo. Acta Biomater. 2018;69:71-82. 129. Lee J, Hong J, Kim W, Kim GH. Bone-derived dECM/
doi: 10.1016/j.actbio.2017.12.043
alginate bioink for fabricating a 3D cell-laden mesh
119. Liguori GR, Liguori TTA, de Moraes SR, et al. Molecular structure for bone tissue engineering. Carbohydr Polym.
and biomechanical clues from cardiac tissue decellularized 2020;250:116914.
extracellular matrix drive stromal cell plasticity. Front Bioeng doi: 10.1016/j.carbpol.2020.116914
Biotechnol. 2020;8:520. 130. Parthiban SP, Athirasala A, Tahayeri A, et al. BoneMA-
doi: 10.3389/fbioe.2020.00520
synthesis and characterization of a methacrylated bone-
120. Jang J, Park HJ, Kim SW, et al. 3D printed complex tissue derived hydrogel for bioprinting ofin-vitrovascularized
construct using stem cell-laden decellularized extracellular tissue constructs. Biofabrication. 2021;13(3):10.1088/1758-
matrix bioinks for cardiac repair. Biomaterials. 2017;112: 5090/abb11f..
264-274. doi: 10.1088/1758-5090/abb11f
doi: 10.1016/j.biomaterials.2016.10.026
131. Zhang X, Liu Y, Zuo Q, et al. 3D bioprinting of biomimetic
121. Wang X, Pierre V, Liu C, Senapati S, Park PS, Senyo SE. bilayered scaffold consisting of decellularized extracellular
Exogenous extracellular matrix proteins decrease cardiac matrix and silk fibroin for osteochondral repair.
fibroblast activation in stiffening microenvironment Int J Bioprint. 2021;7(4):401.
through CAPG. J Mol Cell Cardiol. 2021;159:105-119. doi: 10.18063/ijb.v7i4.401
doi: 10.1016/j.yjmcc.2021.06.001
132. Hwangbo H, Lee J, Kim G. Mechanically and biologically
122. Mesquita FCP, Morrissey J, Lee P-F, et al. Cues from human enhanced 3D-printed HA/PLLA/dECM biocomposites
atrial extracellular matrix enrich the atrial differentiation for bone tissue engineering. Int J Biol Macromol. 2022;
of human induced pluripotent stem cell-derived 218:9-21.
cardiomyocytes. Biomater Sci. 2021;9:3737-3749. doi: 10.1016/j.ijbiomac.2022.07.040
doi: 10.1039/d0bm01686a
133. Zhu S, Chen P, Chen Y, Li M, Chen C, Lu H. 3D-printed
123. Choi YJ, Park SJ, Yi H-G, et al. Muscle-derived extracellular extracellular matrix/polyethylene glycol diacrylate hydrogel
matrix on sinusoidal wavy surfaces synergistically promotes incorporating the anti-inflammatory phytomolecule
myogenic differentiation and maturation. J Mater Chem B. honokiol for regeneration of osteochondral defects. Am J
2018;6:5530-5539. Sports Med. 2020;48(11):2808-2818.
doi: 10.1039/c8tb01475b doi: 10.1177/0363546520941842
124. Choi YJ, Jun YJ, Kim DY, et al. A 3D cell printed muscle 134. Chae S, Lee SS, Choi YJ, et al. 3D cell-printing of
construct with tissue-derived bioink for the treatment biocompatible and functional meniscus constructs using
of volumetric muscle loss. Biomaterials. 2019;206: meniscus-derived bioink. Biomaterials. 2021;267:120466.
160-169. doi: 10.1016/j.biomaterials.2020.120466
doi: 10.1016/j.biomaterials.2019.03.036
135. Setayeshmehr M, Hafeez S, van Blitterswijk C, Moroni L,
125. Kim W, Lee H, Lee J, et al. Efficient myotube formation Mota C, Baker MB. Bioprinting via a dual-gel bioink based
in 3D bioprinted tissue construct by biochemical and on poly(vinyl alcohol) and solubilized extracellular matrix
topographical cues. Biomaterials. 2020;230:119632. towards cartilage engineering. Int J Mol Sci. 2021;22(8):3901.
doi: 10.1016/j.biomaterials.2019.119632 doi: 10.3390/ijms22083901
126. Zhao F, Cheng J, Sun M, et al. Digestion degree is a key factor 136. Visscher DO, Lee H, van Zuijlen PPM, et al. A photo-
to regulate the printability of pure tendon decellularized crosslinkable cartilage-derived extracellular matrix bioink
Volume 10 Issue 5 (2024) 92 doi: 10.36922/ijb.3418

