Page 103 - IJB-10-5
P. 103

International Journal of Bioprinting                            dECM bioink for 3D musculoskeletal tissue reg.




               for cartilage tissue engineering.  Biomolecules. 2022;   195. Kobayashi M, Kadota J, Hashimoto Y, et al. Elastic modulus
               12(2):216.                                         of ECM hydrogels derived from decellularized tissue affects
               doi: 10.3390/biom12020216                          capillary network formation in endothelial cells. Int J Mol
                                                                  Sci. 2020;21(17):6304.
            184. Yang Z, Zhao T, Gao C, et al. 3D-bioprinted difunctional
               scaffold for in situ cartilage regeneration based on      doi: 10.3390/ijms21176304
               aptamer-directed cell recruitment and growth factor-  196. Radeke  C,  Pons  R,  Mihajlovic  M,  et  al.  Transparent
               enhanced cell chondrogenesis. ACS Appl Mater Interfaces.   and cell-guiding cellulose nanofiber 3d printing
               2021;13(20):23369-23383                            bioinks.   ACS  Appl  Mater  Interfaces.  2023;15(2):
            185. Meng X, Zhou Z, Chen X, et al. A sturgeon cartilage   2564-2577.
               extracellular matrix-derived bioactive bioink for tissue      doi: 10.1021/acsami.2c16126
               engineering applications. Int J Bioprint. 2023;9(5):768.  197. Arezoo N, Mohammad H, Malihezaman M. Tissue
               doi: 10.18063/ijb.768                              engineering of mouse uterus using menstrual blood stem
            186. Yang Z, Cao F, Li H, et al. Microenvironmentally optimized   cells (MenSCs) and decellularized uterine scaffold. Stem Cell
               3D-printed  TGFβ-functionalized  scaffolds  facilitate  Res Ther. 2021;12(1):475.
               endogenous cartilage regeneration in sheep. Acta Biomater.      doi: 10.1186/s13287-021-02543-y.
               2022;150:181-198.                               198. Brown M, Li J, Moraes C, Tabrizian M, Li-Jessen NYK.
               doi: 10.1016/j.actbio.2022.07.029                  Decellularized extracellular matrix: new promising and
            187. Zhang H, Wang Y, Zheng Z, et al. Strategies for improving   challenging biomaterials for regenerative medicine.
               the 3D printability of decellularized extracellular matrix   Biomaterials. 2022;289:121786.
               bioink. Theranostics. 2023;13(8):2562-2587.        doi: 10.1016/j.biomaterials.2022.12178
               doi: 10.7150/thno.81785                         199. Han H, Kim M, Yong U,  et al. Tissue-specific gelatin
            188. Seok JM, Ahn M, Kim D, Lee JS. Decellularized matrix bioink   bioink  as  a  rheology  modifier  for  high  printability  and
               with gelatin methacrylate for simultaneous improvements   adjustable tissue properties.  Biomater  Sci. 2024;12:
               in printability and biofunctionality.  Int J Biol Macromol.   2599-2613.
               2024;262:130194.                                   doi: 10.1039/d3bm02111d
               doi: 10.1016/j.ijbiomac.2024.130194             200. Lian L, Xie M, Luo Z, et al. Rapid volumetric bioprinting
            189. Won JY, Lee MH, Kim MJ, et al. A potential dermal   of decellularized extracellular matrix bioinks.  Adv Mater.
               substitute using decellularized dermis extracellular matrix   2024;e2304846.
               derived bio-ink. Artif Cells Nanomed Biotechnol. 2019;47(1):      doi: 10.1002/adma.202304846
               644-649.                                        201. Lee H, Ju YM, Kim I, et al. A novel decellularized skeletal
               doi: 10.1080/21691401.2019.1575842                 muscle-derived ECM scaffolding system for in situ muscle
            190. Tan YH, Helms HR, Nakayama KH. Decellularization   regeneration. Methods. 2020;171:77-85.
               strategies for regenerating cardiac and skeletal muscle      doi: 10.1016/j.ymeth.2019.06.027
               tissues. Front Bioeng Biotechnol. 2022;10:831300.  202. Witt R, Weigand A, Boos AM, et al. Mesenchymal stem
               doi: 10.3389/fbioe.2022.831300                     cells and myoblast differentiation under HGF and IGF-1
            191. Saldin LT, Cramer MC, Velankar SS, White LJ, Badylak SF.   stimulation for 3D skeletal muscle tissue engineering. BMC
               Extracellular matrix hydrogels from decellularized tissues:   Cell Biol. 2017;18(1):15.
               structure and function. Acta Biomater. 2017;49:1-15.     doi: 10.1186/s12860-017-0131-2
               doi: 10.1016/j.actbio.2016.11.068               203. Sani M, Hosseinie R, Latifi M, et al. Engineered artificial
            192. Yuan Z, Liu S, Hao C, et al. AMECM/DCB scaffold prompts   articular cartilage made of decellularized extracellular
               successful total meniscus reconstruction in a rabbit total   matrix by mechanical and IGF-1 stimulation. Biomater Adv.
               meniscectomy model. Biomaterials. 2016;111:13-26.  2022;139:213019.
               doi: 10.1016/j.biomaterials.2016.09.017            doi: 10.1016/j.bioadv.2022.213019
            193. Silva AC, Rodrigues SC, Caldeira J, et al. Three-dimensional   204. Su X, Wang T, Guo S. Applications of 3D printed bone
               scaffolds of fetal decellularized hearts exhibit enhanced   tissue engineering scaffolds in the stem cell field. Regen Ther.
               potential to support cardiac cells in comparison to the adult.   2021;16:63-72.
               Biomaterials. 2016;104:52-64.                      doi: 10.1016/j.reth.2021.01.007
               doi: 10.1016/j.biomaterials.2016.06.062         205. Iwasaki N, Roldo M, Karali A, Blunn G. In vitro development
            194. Robertson MJ, Dries-Devlin JL, Kren SM, Burchfield JS, Taylor   of a muscle-tendon junction construct using decellularised
               DA.  Optimizing  recellularization  of  whole  decellularized   extracellular matrix: effect of cyclic tensile loading. Biomater
               heart extracellular matrix. PLoS One. 2014;9(2):e90406.  Adv. 2024;161:213873.
               doi: 10.1371/journal.pone.0090406                  doi: 10.1016/j.bioadv.2024.213873


            Volume 10 Issue 5 (2024)                        95                                doi: 10.36922/ijb.3418
   98   99   100   101   102   103   104   105   106   107   108