Page 103 - IJB-10-5
P. 103
International Journal of Bioprinting dECM bioink for 3D musculoskeletal tissue reg.
for cartilage tissue engineering. Biomolecules. 2022; 195. Kobayashi M, Kadota J, Hashimoto Y, et al. Elastic modulus
12(2):216. of ECM hydrogels derived from decellularized tissue affects
doi: 10.3390/biom12020216 capillary network formation in endothelial cells. Int J Mol
Sci. 2020;21(17):6304.
184. Yang Z, Zhao T, Gao C, et al. 3D-bioprinted difunctional
scaffold for in situ cartilage regeneration based on doi: 10.3390/ijms21176304
aptamer-directed cell recruitment and growth factor- 196. Radeke C, Pons R, Mihajlovic M, et al. Transparent
enhanced cell chondrogenesis. ACS Appl Mater Interfaces. and cell-guiding cellulose nanofiber 3d printing
2021;13(20):23369-23383 bioinks. ACS Appl Mater Interfaces. 2023;15(2):
185. Meng X, Zhou Z, Chen X, et al. A sturgeon cartilage 2564-2577.
extracellular matrix-derived bioactive bioink for tissue doi: 10.1021/acsami.2c16126
engineering applications. Int J Bioprint. 2023;9(5):768. 197. Arezoo N, Mohammad H, Malihezaman M. Tissue
doi: 10.18063/ijb.768 engineering of mouse uterus using menstrual blood stem
186. Yang Z, Cao F, Li H, et al. Microenvironmentally optimized cells (MenSCs) and decellularized uterine scaffold. Stem Cell
3D-printed TGFβ-functionalized scaffolds facilitate Res Ther. 2021;12(1):475.
endogenous cartilage regeneration in sheep. Acta Biomater. doi: 10.1186/s13287-021-02543-y.
2022;150:181-198. 198. Brown M, Li J, Moraes C, Tabrizian M, Li-Jessen NYK.
doi: 10.1016/j.actbio.2022.07.029 Decellularized extracellular matrix: new promising and
187. Zhang H, Wang Y, Zheng Z, et al. Strategies for improving challenging biomaterials for regenerative medicine.
the 3D printability of decellularized extracellular matrix Biomaterials. 2022;289:121786.
bioink. Theranostics. 2023;13(8):2562-2587. doi: 10.1016/j.biomaterials.2022.12178
doi: 10.7150/thno.81785 199. Han H, Kim M, Yong U, et al. Tissue-specific gelatin
188. Seok JM, Ahn M, Kim D, Lee JS. Decellularized matrix bioink bioink as a rheology modifier for high printability and
with gelatin methacrylate for simultaneous improvements adjustable tissue properties. Biomater Sci. 2024;12:
in printability and biofunctionality. Int J Biol Macromol. 2599-2613.
2024;262:130194. doi: 10.1039/d3bm02111d
doi: 10.1016/j.ijbiomac.2024.130194 200. Lian L, Xie M, Luo Z, et al. Rapid volumetric bioprinting
189. Won JY, Lee MH, Kim MJ, et al. A potential dermal of decellularized extracellular matrix bioinks. Adv Mater.
substitute using decellularized dermis extracellular matrix 2024;e2304846.
derived bio-ink. Artif Cells Nanomed Biotechnol. 2019;47(1): doi: 10.1002/adma.202304846
644-649. 201. Lee H, Ju YM, Kim I, et al. A novel decellularized skeletal
doi: 10.1080/21691401.2019.1575842 muscle-derived ECM scaffolding system for in situ muscle
190. Tan YH, Helms HR, Nakayama KH. Decellularization regeneration. Methods. 2020;171:77-85.
strategies for regenerating cardiac and skeletal muscle doi: 10.1016/j.ymeth.2019.06.027
tissues. Front Bioeng Biotechnol. 2022;10:831300. 202. Witt R, Weigand A, Boos AM, et al. Mesenchymal stem
doi: 10.3389/fbioe.2022.831300 cells and myoblast differentiation under HGF and IGF-1
191. Saldin LT, Cramer MC, Velankar SS, White LJ, Badylak SF. stimulation for 3D skeletal muscle tissue engineering. BMC
Extracellular matrix hydrogels from decellularized tissues: Cell Biol. 2017;18(1):15.
structure and function. Acta Biomater. 2017;49:1-15. doi: 10.1186/s12860-017-0131-2
doi: 10.1016/j.actbio.2016.11.068 203. Sani M, Hosseinie R, Latifi M, et al. Engineered artificial
192. Yuan Z, Liu S, Hao C, et al. AMECM/DCB scaffold prompts articular cartilage made of decellularized extracellular
successful total meniscus reconstruction in a rabbit total matrix by mechanical and IGF-1 stimulation. Biomater Adv.
meniscectomy model. Biomaterials. 2016;111:13-26. 2022;139:213019.
doi: 10.1016/j.biomaterials.2016.09.017 doi: 10.1016/j.bioadv.2022.213019
193. Silva AC, Rodrigues SC, Caldeira J, et al. Three-dimensional 204. Su X, Wang T, Guo S. Applications of 3D printed bone
scaffolds of fetal decellularized hearts exhibit enhanced tissue engineering scaffolds in the stem cell field. Regen Ther.
potential to support cardiac cells in comparison to the adult. 2021;16:63-72.
Biomaterials. 2016;104:52-64. doi: 10.1016/j.reth.2021.01.007
doi: 10.1016/j.biomaterials.2016.06.062 205. Iwasaki N, Roldo M, Karali A, Blunn G. In vitro development
194. Robertson MJ, Dries-Devlin JL, Kren SM, Burchfield JS, Taylor of a muscle-tendon junction construct using decellularised
DA. Optimizing recellularization of whole decellularized extracellular matrix: effect of cyclic tensile loading. Biomater
heart extracellular matrix. PLoS One. 2014;9(2):e90406. Adv. 2024;161:213873.
doi: 10.1371/journal.pone.0090406 doi: 10.1016/j.bioadv.2024.213873
Volume 10 Issue 5 (2024) 95 doi: 10.36922/ijb.3418

