Page 102 - IJB-10-5
P. 102
International Journal of Bioprinting dECM bioink for 3D musculoskeletal tissue reg.
tendon and ligament repair: a review. Int J Biol Macromol. 172. Badar W, Ali H, Brooker ON, et al. Collagen pre-strain
2024;254:127891. discontinuity at the bone-Cartilage interface. PLoS One.
doi: 10.1016/j.ijbiomac.2023.127891 2022;17(9):e0273832.
doi: 10.1371/journal.pone.0273832
161. Toprakhisar B, Nadernezhad A, Bakirci E, Khani N, Skvortsov
GA, Koc B. Development of bioink from decellularized 173. Xu J, Ji J, Jiao J, et al. 3D printing for bone-cartilage interface
tendon extracellular matrix for 3d bioprinting. Macromol regeneration. Front Bioeng Biotechnol. 2022;10:828921.
Biosci. 2018;18(10):e1800024. doi: 10.3389/fbioe.2022.828921
doi: 10.1002/mabi.201800024
174. Terpstra ML, Li J, Mensinga A, et al. Bioink with cartilage-
162. Chae S, Choi YJ, Cho DW. Mechanically and biologically derived extracellular matrix microfibers enables spatial
promoted cell-laden constructs generated using tissue- control of vascular capillary formation in bioprinted
specific bioinks for tendon/ligament tissue engineering constructs. Biofabrication. 2022;14(3).
applications. Biofabrication. 2022;14(2):025013. doi: 10.1088/1758-5090/ac6282
doi: 10.1088/1758-5090/ac4fb6
175. Zhang Y, Wu D, Zhao X, et al. Stem cell-friendly scaffold
163. Kim D, Kim GH. Bioprinted hASC-laden cell constructs biomaterials: applications for bone tissue engineering
with mechanically stable and cell alignment cue for and regenerative medicine. Front Bioeng Biotechnol.
tenogenic differentiation. Biofabrication. 2023;15(4):1. 2020;8:598607.
doi: 10.1088/1758-5090/ace740 doi: 10.3389/fbioe.2020.598607
164. Balestri W, Morris RH, Hunt JA, Reinwald Y. Current 176. Kim D, Lee H, Lee GH, Hoang TH, Kim HR, Kim GH.
advances on the regeneration of musculoskeletal interfaces. Fabrication of bone-derived decellularized extracellular
Tissue Eng Part B Rev. 2021;27:548-571. matrix/ceramic-based biocomposites and their osteo/
doi: 10.1089/ten.TEB.2020.0112 odontogenic differentiation ability for dentin regeneration.
Bioeng Transl Med. 2022;7(3):e10317.
165. Bonnevie ED, Mauck RL. Physiology and engineering of the
graded interfaces of musculoskeletal junctions. Annu Rev doi: 10.1002/btm2.10317
Biomed Eng. 2018;20:403-429. 177. Hung BP, Naved BA, Nyberg EL, et al. Three-dimensional
doi: 10.1146/annurev-bioeng-062117-121113 printing of bone extracellular matrix for craniofacial
regeneration. ACS Biomater Sci Eng. 2016;2(10):1806-1816.
166. Chae S, Sun Y, Choi YJ, Ha DH, Jeon I, Cho DW. 3D cell-
printing of tendon-bone interface using tissue-derived doi: 10.1021/acsbiomaterials.6b00101
extracellular matrix bioinks for chronic rotator cuff repair. 178. Kang Y, Xu J, Meng L, et al. 3D bioprinting of dECM/Gel/
Biofabrication. 2021;13(3):1-2,27. QCS/nHAp hybrid scaffolds laden with mesenchymal
doi: 10.1088/1758-5090/abd159 stem cell-derived exosomes to improve angiogenesis and
osteogenesis. Biofabrication. 2023;15(2).
167. Chae S, Yong U, Park W, et al. 3D cell-printing of gradient
multi-tissue interfaces for rotator cuff regeneration. Bioact doi: 10.1088/1758-5090/acb6b8.
Mater. 2022;19:611-625. 179. Lammi MJ, Piltti J, Prittinen J, Qu C. Challenges in
doi: 10.1016/j.bioactmat.2022.05.004 fabrication of tissue-engineered cartilage with correct
cellular colonization and extracellular matrix assembly. Int
168. Liu H, Yang L, Zhang E, et al. Biomimetic tendon
extracellular matrix composite gradient scaffold enhances J Mol Sci. 2018;19(9):2700.
ligament-to-bone junction reconstruction. Acta Biomater. doi: 10.3390/ijms19092700
2017;56:129-140. 180. Ahmed TA, Hincke MT. Strategies for articular cartilage
doi: 10.1016/j.actbio.2017.05.027 lesion repair and functional restoration. Tissue Eng Part B
Rev. 2010;16:305-329.
169. Shengnan Q, Bennett S, Wen W, Aiguo L, Jiake X. The role
of tendon derived stem/progenitor cells and extracellular doi: 10.1089/ten.TEB.2009.0590
matrix components in the bone tendon junction repair. 181. Hogan KJ, Öztatlı H, Perez MR, et al. Development of
Bone. 2021;153:116172. photoreactive demineralized bone matrix 3D printing
doi: 10.1016/j.bone.2021.116172 colloidal inks for bone tissue engineering. Regen Biomater.
2023;10:rbad090.
170. Tong S, Sun Y, Kuang B, et al. A comprehensive review of
muscle-tendon junction: structure, function, injury and doi: 10.1093/rb/rbad090
repair. Biomedicines. 2024;12(2):423. 182. Yuan Z, Lyu Z, Liu X, Zhang J, Wang Y. Mg-BGNs/DCECM
doi: 10.3390/biomedicines12020423 composite scaffold for cartilage regeneration: a preliminary
in vitro study. Pharmaceutics. 2021;13(10):1550.
171. Kim WJ, Kim GH. A bioprinted complex tissue model for
myotendinous junction with biochemical and biophysical doi: 10.3390/pharmaceutics13101550
cues. Bioeng Transl Med. 2022;7(3):e10321. 183. Behan K, Dufour A, Garcia O, Kelly D. Methacrylated
doi: 10.1002/btm2.10321 cartilage ECM-based hydrogels as injectables and bioinks
Volume 10 Issue 5 (2024) 94 doi: 10.36922/ijb.3418

