Page 96 - IJB-10-5
P. 96

International Journal of Bioprinting                            dECM bioink for 3D musculoskeletal tissue reg.




            23.  Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini   transparency,  improved  in  vivo  safety.  J Tissue Eng.  2019;
               A, Dokmeci MR. Bioinks for 3D bioprinting: an overview.   10:2041731418823382.
               Biomater Sci. 2018;6:915-946.                      doi: 10.1177/2041731418823382
               doi: 10.1039/c7bm00765e
                                                               35.  Kim BS, Kwon YW, Kong JS, et al. 3D cell printing of in vitro
            24.  Pati F, Jang J, Ha DH, et al. Printing three-dimensional tissue   stabilized skin model and in  vivo pre-vascularized skin
               analogues with decellularized extracellular matrix bioink.   patch using tissue-specific extracellular matrix  bioink: a
               Nat Commun. 2014;5:3935.                           step towards advanced skin tissue engineering. Biomaterials.
               doi: 10.1038/ncomms4935                            2018;168:38-53.
                                                                  doi: 10.1016/j.biomaterials.2018.03.040
            25.  Zhang  X,  Liu  Y,  Luo  C,  et  al.  Crosslinker-free  silk/
               decellularized extracellular matrix porous bioink for 3D   36.  Yeleswarapu  S,  Dash  A,  Chameettachal  S,  Pati  F.  3D
               bioprinting-based cartilage tissue engineering.  Mater Sci   bioprinting of tissue constructs employing dual crosslinking
               Eng C Mater Biol Appl. 2021;118:111388.            of decellularized extracellular matrix hydrogel.  Biomater
               doi: 10.1016/j.msec.2020.111388                    Adv. 2023;152:213494.
                                                                  doi: 10.1016/j.bioadv.2023.213494
            26.  Pati  F,  Cho  DW.  Bioprinting  of  3D  tissue  models  using
               decellularized extracellular matrix bioink. Methods Mol Biol.   37.  Xu P, Kankala RK, Wang S, Chen A. Decellularized
               2017;1612:381-390.                                 extracellular  matrix-based  composite  scaffolds  for  tissue
               doi: 10.1007/978-1-4939-7021-6_27                  engineering and regenerative medicine.  Regen Biomater.
                                                                  2014;11:rbad107.
            27.  Shin YJ, Shafranek RT, Tsui JH, Walcott J, Nelson A, Kim
               DH. 3D bioprinting of mechanically tuned bioinks derived      doi: 10.1093/rb/rbad107
               from cardiac decellularized extracellular matrix.  Acta   38.  Das S, Kim SW, Choi YJ, et al. Decellularized extracellular
               Biomater. 2021;119:75-88.                          matrix bioinks and the external stimuli to enhance cardiac
               doi: 10.1016/j.actbio.2020.11.006                  tissue development in vitro. Acta Biomater. 2019;95:188-200.
                                                                  doi: 10.1016/j.actbio.2019.04.026
            28.  Oropeza BP, Adams JR, Furth ME, Chessa J, Boland T.
               Bioprinting of decellularized porcine cardiac tissue for large-  39.  Choi YJ, Kim TG, Jeong J, et al. 3D cell printing of functional
               scale aortic models. Front Bioeng Biotechnol. 2022;10: 855186.  skeletal muscle constructs using skeletal muscle-derived
               doi: 10.3389/fbioe.2022.855186                     bioink. Adv Healthc Mater. 2016;5(20):2636-2645.
                                                                  doi: 10.1002/adhm.201600483
            29.  Park W, Gao G, Cho DW. Tissue-specific decellularized
               extracellular matrix bioinks for musculoskeletal tissue   40.  Yang SS, Choi WH, Song B, Jin H. Fabrication of an
               regeneration and modeling using 3D bioprinting technology.   osteochondral graft with using a solid freeform fabrication
               Int J Mol Sci. 2021;22(15):7837.                   system. Tissue Eng Regener Med. 2015;12:239-248.
               doi: 10.3390/ijms22157837                          doi: 10.1007/s13770-015-0001-y
            30.  Lee J, Lee H, Jin EJ, Ryu D, Kim GH. 3D bioprinting   41.  Tsui JH, Leonard A, Camp ND, et al. Tunable
               using a new photo-crosslinking method for muscle tissue   electroconductive decellularized extracellular matrix
               restoration. NPJ Regen Med. 2023;8:18.             hydrogels for engineering human cardiac microphysiological
               doi: 10.1038/s41536-023-00292-5                    systems. Biomaterials. 2021;272:120764.
                                                                  doi: 10.1016/j.biomaterials.2021.120764
            31.  Zhu W, Cao L, Song C, Pang Z, Jiang H, Guo C. Cell-derived
               decellularized extracellular matrix scaffolds for articular   42.  Heinrich MA, Liu W, Jimenez A, et al. 3D bioprinting:
               cartilage repair. Int J Artif Organs. 2021;44(4):269-281.  from Benches to translational applications.  Small.
               doi: 10.1177/0391398820953866                      2019;15(23):e1805510.
                                                                  doi: 10.1002/smll.201805510
            32.  Sang S, Mao X, Cao Y, et al. 3D bioprinting using synovium-
               derived MSC-Laden photo-cross-linked ECM bioink   43.  Tuan RS, Boland G, Tuli R. Adult mesenchymal stem
               for cartilage regeneration.  ACS Appl Mater Interfaces.   cells and cell-based tissue engineering.  Arthritis Res Ther.
               2023;15(7):8895-8913.                              2003;5(1):32-45.
               doi: 10.1021/acsami.2c19058                        doi: 10.1186/ar614
            33.  Hwang DG, Jo Y, Kim M, et al. A 3D bioprinted hybrid   44.  Singh M, Haverinen HM, Dhagat P, Jabbour GE. Inkjet
               encapsulation system for delivery of human pluripotent stem   printing-process and its applications.  Adv Mater.
               cell-derived pancreatic islet-like aggregates. Biofabrication.   2010;22:673-685.
               2021;14(1):1-3.                                    doi: 10.1002/adma.200901141
               doi: 10.1088/1758-5090/ac23ac
                                                               45.  Stringer J, Derby B. Formation and stability of lines produced
            34.  Kim H, Park MN, Kim J, Jang J, Kim HK, Cho DW.   by inkjet printing. Langmuir. 2010;26:10365-10372.
               Characterization  of  cornea-specific  bioink:  high     doi: 10.1021/la101296e



            Volume 10 Issue 5 (2024)                        88                                doi: 10.36922/ijb.3418
   91   92   93   94   95   96   97   98   99   100   101