Page 95 - IJB-10-5
P. 95

International Journal of Bioprinting                            dECM bioink for 3D musculoskeletal tissue reg.




            Consent for publication                               organ regenerative engineering.  Biomaterials. 2020;226:
                                                                  119536.
            Not applicable.                                       doi: 10.1016/j.biomaterials.2019.119536

            Availability of data                               12.  Luo Z, Tang G, Ravanbakhsh H, et al. Vertical extrusion
                                                                  cryo(bio)printing for anisotropic tissue manufacturing. Adv
            Not applicable.                                       Mater. 2022;34(12):e2108931.
                                                                  doi: 10.1002/adma.202108931
            References                                         13.  Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT. The bioink: a
                                                                  comprehensive review on bioprintable materials. Biotechnol
            1.   Potyondy T, Uquillas JA, Tebon P, Byambaa B. Recent   Adv. 2017;35(2):217-239.
               advances in 3D bioprinting of musculoskeletal tissues.      doi: 10.1016/j.biotechadv.2016.12.006
               Biofabrication. 2021; 13(2):2-3.
               doi: 10.1088/1758-5090/abc8de                   14.  Zhang J, Wehrle  E, Adamek  P, et  al.  Optimization of
                                                                  mechanical stiffness and cell density of 3D bioprinted cell-
            2.   Briggs AM, Woolf AD, Dreinhöfer K, et al. Reducing the   laden scaffolds improves extracellular matrix mineralization
               global burden of musculoskeletal conditions.  Bull World   and cellular organization for bone tissue engineering. Acta
               Health Organ. 2018;96(5):366-368.                  Biomater. 2020;114:307-322.
               doi: 10.2471/BLT.17.204891                         doi: 10.1016/j.actbio.2020.07.016
            3.   Shibuya N, Jupiter DC. Bone graft substitute: allograft and   15.  Dzobo K, Thomford NE, Senthebane DA, et al. Advances
               xenograft. Clin Podiatr Med Surg. 2015;32:21-34.   in regenerative medicine and tissue engineering:
               doi: 10.1016/j.cpm.2014.09.011                     innovation and transformation of medicine. Stem Cells Int.
            4.   Wang MO, Vorwald CE, Dreher ML, et al. Evaluating   2018;2018:2495848.
               3D-printed biomaterials as scaffolds for vascularized bone      doi: 10.1155/2018/2495848
               tissue engineering. Adv Mater. 2015;27(1):138-144.  16.  Radhakrishnan J, Subramanian A, Krishnan  UM,
               doi: 10.1002/adma.201403943                        Sethuraman S. Injectable and 3D bioprinted polysaccharide
            5.   Hoffman T, Khademhosseini A, Langer R. Chasing   hydrogels: from cartilage to osteochondral tissue
               the paradigm: clinical translation of 25 years of tissue   engineering. Biomacromolecules. 2017;18(1):1-26.
               engineering. Tissue Eng Part A. 2019;25:679-687.     doi: 10.1021/acs.biomac.6b01619
               doi: 10.1089/ten.TEA.2019.0032                  17.  Ahlfeld T, Mateo NC, Cometta S, Guduric VTN. A novel
            6.   Golebiowska AA, Intravaia JT, Sathe VM, Kumbar SG,   plasma-based bioink stimulates cell proliferation and
               Nukavarapu SP. Decellularized extracellular matrix   differentiation in bioprinted, mineralized constructs.  ACS
               biomaterials for regenerative therapies: Advances, challenges   Appl Mater Interfaces. 2020;12:12557-12572.
               and clinical prospects. Bioact Mater. 2023;32:98-123.     doi: 10.1021/acsami.0c00710
               doi: 10.1016/j.bioactmat.2023.09.017
                                                               18.  Cheng L, Yao B, Hu T, et al. Properties of an alginate-gelatin-
            7.   Zorlutuna P, Vrana NE, Khademhosseini A. The expanding   based bioink and its potential impact on cell migration,
               world  of  tissue  engineering:  the  building  blocks  and  new   proliferation,  and  differentiation.  Int J Biol Macromol.
               applications of tissue engineered constructs.  IEEE Rev   2019;135:1107-1113.
               Biomed Eng. 2013;6:47-62.                          doi: 10.1016/j.ijbiomac.2019.06.017
               doi: 10.1109/RBME.2012.2233468                  19.  Ding S, Feng L, Wu J, et al. Bioprinting of stem cells: interplay
            8.   Zhe M, Wu X, Yu P, et al. Recent advances in decellularized   of  bioprinting  process,  bioinks,  and  stem  cell  properties.
               extracellular matrix-based bioinks for 3D bioprinting in   ACS Biomater Sci Eng. 2018;4(9):3108-3124.
               tissue engineering. Materials (Basel). 2023;16(8):3197.     doi: 10.1021/acsbiomaterials.8b00399
               doi: 10.3390/ma16083197                         20.  Murphy SV, Atala A. 3D bioprinting of tissues and organs.
            9.   Tao O, Kort-Mascort J, Lin Y, et al. The applications of 3D   Nat Biotechnol. 2014;32:773-785.
               printing for craniofacial tissue engineering. Micromachines      doi: 10.1038/nbt.2958
               (Basel). 2019;10(7):480.                        21.  Zheng  Z,  Wu  J,  Liu  M,  et  al.  3D  bioprinting  of  self-
               doi: 10.3390/mi10070480                            standing silk-based bioink.  Adv Healthc Mater. 2018;7(6):
            10.  Mao AS, Mooney DJ. Regenerative medicine: current   e1701026.
               therapies and future directions. Proc Natl Acad Sci U S A.      doi: 10.1002/adhm.201701026
               2015;112(47):14452-14459.                       22.  Rutz AL, Hyland KE, Jakus AE, Burghardt WR, Shah RN. A
               doi: 10.1073/pnas.1508520112
                                                                  multimaterial bioink method for 3D printing tunable, cell-
            11.  Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin   compatible hydrogels. Adv Mater. 2015;27:1607-1614.
               CT. Progress in 3D  bioprinting technology for  tissue/     doi: 10.1002/adma.201405076


            Volume 10 Issue 5 (2024)                        87                                doi: 10.36922/ijb.3418
   90   91   92   93   94   95   96   97   98   99   100