Page 204 - IJB-10-5
P. 204
International Journal of Bioprinting Structural design of D-surface scaffolds
References doi: 10.1016/j.addma.2023.103778
12. Reynolds BW, Fee CJ, Morison KR, Holland DJ.
1. Zhang YT, Aiyiti W, Du S, Jia R, Jiang HF. Design and Characterisation of heat transfer within 3D printed TPMS
mechanical behaviors of a novel tantalum lattice structure heat exchangers. Int J Heat Mass Transfer. 2023;212:124264.
fabricated by SLM. Virtual Phys Prototy. 2023;18(1):2192702. doi: 10.1016/j.ijheatmasstransfer.2023.124264
doi: 10.1080/17452759.2023.2192702
13. Sang L, Wu WY, Sun ZQ, et al. Reusability and energy
2. Chang CM, Wong PC, Ou SL, Ko CE, Wang YT. absorption behavior of 4D-printed heterogeneous lattice
Optimizing implant lattice design for large distal femur structures based on biomass shape memory polyester.
defects: stimulating interface bone growth to enhance J Mater Res Technol. 2023;27:1563-1578.
osseointegration. Int J Bioprint. 2024;10:544-562. doi: 10.1016/j.jmrt.2023.09.323
doi: 10.36922/ijb.2590
14. Laskowska D, Szatkiewicz T, Balasz B, Mitura K. Mechanical
3. Cuan-Urquizo E, Silva RG. Fused filament fabrication of properties and energy absorption abilities of diamond
cellular, lattice and porous mechanical metamaterials: a TPMS cylindrical structures fabricated by selective laser
review. Virtual Phys Prototy. 2023;18:2224300. melting with 316L stainless steel. Materials. 2023;16:3196.
doi: 10.1080/17452759.2023.2224300 doi: 10.3390/ma16083196
4. Maskery I, Ashcroft IA. The deformation and elastic 15. Bo L, Jiawei F, Zhiwei L, Yong H, Jianzhong F. Controllable
anisotropy of a new gyroid-based honeycomb made by laser three-dimension auxetic structure design strategies based
sintering. Addi Manuf. 2020;36:101548. on triply periodic minimal surfaces and the application in
doi: 10.1016/j.addma.2020.101548 hip implant. Virtual Phys Prototy. 2023;18:e2170890.
doi: 10.1080/17452759.2023.2170890
5. Xi HF, Zhou ZC, Zhang HH, Huang SQ, Xiao H. Multi-
morphology TPMS structures with multi-stage yield 16. Zou SJ, Mu YR, Pan BC, et al. Mechanical and biological
stress platform and multi-level energy absorption: design, properties of enhanced porous scaffolds based on triply
manufacturing, and mechanical properties. Eng Struct. periodic minimal surfaces. Mater Des. 2022;219:110803.
2023;294:116733. doi: 10.1016/j.matdes.2022.110803
doi: 10.1016/j.engstruct.2023.116733 17. Zhang Q, Ma LM, Ji XF, et al. High-strength hydroxyapatite
6. Yin HF, Tan DW, Wen GL, Tian WY, Wu QK. Crashworthiness scaffolds with minimal surface macrostructures for
analysis and optimization design of TPMS-filled structure. load-bearing bone regeneration. Adv Funct Mater.
Int J Crashworthiness. 2022;27:1481-1498. 2022;32:2204182.
doi: 10.1080/13588265.2021.1959171 doi: 10.1002/adfm.202204182
7. Wang HW, Chen CH, Chen KH, Zeng YH, Lin CL. 18. Zhang ZH, He FT, Wang B, et al. Biodegradable PGA/PBAT
Designing a 3D-printed medical implant with mechanically blends for 3D printing: material performance and periodic
macrostructural topology and microbionic lattices: a minimal surface structures. Polymers. 2021;13(1):3757.
novel wedge-shaped spacer for high tibial osteotomy and doi: 10.3390/polym13213757
biomechanical study. Int J Bioprint. 2024;10:1584. 19. Cao YX, Lai SY, Wu WY, et al. Design and mechanical
doi: 10.36922/ijb.1584 evaluation of additively-manufactured graded TPMS
8. Wang XB, Zhang L, Song B, et al. Anisotropic mechanical lattices with biodegradable polymer composites. J Mater Res
and mass-transport performance of Ti6Al4V plate-lattice Technol. 2023;23:2868-2880.
scaffolds prepared by laser powder bed fusion. Acta doi: 10.1016/j.jmrt.2023.01.221
Biomater. 2022;148:374-388. 20. Ulbrich LM, Balbinot GD, Brotto GL, et al. 3D printing
doi: 10.1016/j.actbio.2022.06.016 of poly(butylene adipate-co-terephthalate) (PBAT)/
9. Fu H, Huang X, Kaewunruen S. Experimental investigations niobium containing bioactive glasses (BAGNb) scaffolds:
into nonlinear dynamic behaviours of triply periodical characterization of composites, in vitro bioactivity, and in
minimal surface structures. Compos Struct. 2023;323:117510. vivo bone repair. J Tissue Eng Regen Med. 2022;16:267-278.
doi: 10.1016/j.compstruct.2023.117510 doi: 10.1002/term.3276
10. Cai JX, Ma YB, Deng ZC. On the effective elastic modulus 21. Qiu SW, Xia YH, Sun JD, Wang SS, Xing QS. Poly (butylene
of the ribbed structure based on Schwarz Primitive triply adipate-co-terephthalate)/Sodium alginate blends have
periodic minimal surface. Thin Wall Struct. 2022;170:108642. superior characteristics and can be used to fabricate vascular
doi: 10.1016/j.tws.2021.108642 stents. Mater Res Express. 2022;9:055401.
doi: 10.1088/2053-1591/ac6a4c
11. Oh SH, An CH, Seo B, Kim J, Park CY, Park K. Functional
morphology change of TPMS structures for design and 22. Zeng C, Zhang MM. 3D-printed PCL/β-TCP/CS composite
additive manufacturing of compact heat exchangers. Addi artificial bone and histocompatibility study. J Orthop Surg
Manuf. 2023;76:103778. Res. 2024;18:981.
Volume 10 Issue 5 (2024) 196 doi: 10.36922/ijb.3416

