Page 205 - IJB-10-5
P. 205

International Journal of Bioprinting                                 Structural design of D-surface scaffolds




               doi: 10.1186/s13018-023-04489-8                 30.  Huang SF, Chang CM, Lian CY, Chan YT, Liu ZY, Lin CL.
            23.  Yeo T, Ko YG, Kim EJ, Kwon OK, Chuang HY, Kwon OH.   Biomechanical evaluation of an osteoporotic anatomical 3D
               Promoting bone regeneration by 3D-printed poly(glycolic   printed posterior lumbar interbody fusion cage with internal
               acid)/hydroxyapatite composite scaffolds. J Ind Eng Chem.   lattice design based on weighted topology optimization. Int J
               2021;94:343-351.                                   Bioprinting. 2023,9:697.
               doi: 10.1016/j.jiec.2020.11.004                    doi: 10.18063/ijb.697
            24.  Mushtaq  RT,  Wang  YE,  Bao  CW,  et  al.  Maximizing   31.  Liu QY, Wei F, Coathup M, Shen W, Wu DZ. Effect of
               performance and efficiency in 3D printing of polylactic acid   porosity and pore shape on the mechanical and biological
               biomaterials: Unveiling of microstructural morphology,   properties of additively manufactured bone scaffolds. Adv
               and implications of process parameters and modeling of   Healthc Mater. 2023;12:2301111.
               the mechanical strength, surface roughness, print time, and      doi: 10.1002/adhm.202301111
               print energy for fused filament fabricated (FFF) bioparts. Int   32.  Seker S, Aral D, Elcin AE, Murat EY. Biomimetic
               J Biol Macromol. 2024;259:12920.
               doi: 10.1016/j.ijbiomac.2024.129201                mineralization of platelet lysate/oxidized dextran cryogel
                                                                  as a macroporous 3D composite scaffold for bone repair.
            25.  Natarajan A, Sivadas VP, Nair PD. 3D-printed biphasic   Biomed Mater. 2024;19:025006.
               scaffolds for the simultaneous regeneration of osteochondral      doi: 10.1088/1748-605X/ad1c9a
               tissues. Biomed Mater. 2021;16:054102.
               doi: 10.1088/1748-605X/ac14cb                   33.  Li ZL, Wang YX, Zhao CK, et al. Polysaccharide hybrid
                                                                  scaffold encapsulated endogenous factors for microfracture
            26.  Kechagias J, Chaidas D, Vidakis N, Salonitis K, Vaxevanidis   enhancement by sustainable release and cell recruitment.
               NM. Key parameters controlling surface quality and   Compos Part B Eng. 2024;273:111235.
               dimensional accuracy: a critical review of FFF process.      doi: 10.1016/j.compositesb.2024.111235
               Mater Manuf Process. 2022;37(9):963-984.
               doi: 10.1080/10426914.2022.2032144              34.  Xue P, Tan XX, Xi HZ, et al. Low-temperature deposition 3D
                                                                  printing biotin-doped PLGA/β-TCP scaffold for repair of
            27.  Bahraminasab M, Doostmohammadi N, Talebi A, et al.
               3D printed polylactic acid/gelatin-nano-hydroxyapatite/  bone defects in osteonecrosis of femoral head. Int J Bioprint.
               platelet-rich plasma scaffold for critical-sized skull defect   2024;10:1152.
               regeneration. Biomed Eng Online. 2022;21:86.       doi: 10.36922/ijb.1152
               doi: 10.1186/s12938-022-01056-w                 35.  Gao X, Wang H, Luan S, Zhou G. Low-temperature
            28.  Wei L, Wu SH, Kuss M, et al. 3D printing of silk fibroin-  printed hierarchically porous induced-biomineralization
               based hybrid scaffold treated with platelet rich plasma for   polyaryletherketone  scaffold  for  bone  tissue  engineering.
               bone tissue engineering. Bioact Mater. 2019;4:256-260.  Adv Healthc Mater. 2022;11:e2200977.
               doi: 10.1016/j.bioactmat.2019.09.001               doi: 10.1002/adhm.202200977
            29.  Liu W, Sang L, Zhang ZH, Ju SL, Wang F, Zhao YP.   36.  Zhu H, Lin ZH, Luan QF, et al. Angiogenesis-promoting
               Compression and resilient behavior of graded triply periodic   composite TPMS bone tissue engineering scaffold
               minimal surface structures with soft materials fabricated by   for mandibular defect regeneration.  Int J Bioprint.
               fused filament fabrication. J Manuf Process. 2023;105:1-13.  2024;10(1);0153.
               doi: 10.1016/j.jmapro.2023.09.034                  doi: 10.36922/ijb.0153


























            Volume 10 Issue 5 (2024)                       197                                doi: 10.36922/ijb.3416
   200   201   202   203   204   205   206   207   208   209   210