Page 205 - IJB-10-5
P. 205
International Journal of Bioprinting Structural design of D-surface scaffolds
doi: 10.1186/s13018-023-04489-8 30. Huang SF, Chang CM, Lian CY, Chan YT, Liu ZY, Lin CL.
23. Yeo T, Ko YG, Kim EJ, Kwon OK, Chuang HY, Kwon OH. Biomechanical evaluation of an osteoporotic anatomical 3D
Promoting bone regeneration by 3D-printed poly(glycolic printed posterior lumbar interbody fusion cage with internal
acid)/hydroxyapatite composite scaffolds. J Ind Eng Chem. lattice design based on weighted topology optimization. Int J
2021;94:343-351. Bioprinting. 2023,9:697.
doi: 10.1016/j.jiec.2020.11.004 doi: 10.18063/ijb.697
24. Mushtaq RT, Wang YE, Bao CW, et al. Maximizing 31. Liu QY, Wei F, Coathup M, Shen W, Wu DZ. Effect of
performance and efficiency in 3D printing of polylactic acid porosity and pore shape on the mechanical and biological
biomaterials: Unveiling of microstructural morphology, properties of additively manufactured bone scaffolds. Adv
and implications of process parameters and modeling of Healthc Mater. 2023;12:2301111.
the mechanical strength, surface roughness, print time, and doi: 10.1002/adhm.202301111
print energy for fused filament fabricated (FFF) bioparts. Int 32. Seker S, Aral D, Elcin AE, Murat EY. Biomimetic
J Biol Macromol. 2024;259:12920.
doi: 10.1016/j.ijbiomac.2024.129201 mineralization of platelet lysate/oxidized dextran cryogel
as a macroporous 3D composite scaffold for bone repair.
25. Natarajan A, Sivadas VP, Nair PD. 3D-printed biphasic Biomed Mater. 2024;19:025006.
scaffolds for the simultaneous regeneration of osteochondral doi: 10.1088/1748-605X/ad1c9a
tissues. Biomed Mater. 2021;16:054102.
doi: 10.1088/1748-605X/ac14cb 33. Li ZL, Wang YX, Zhao CK, et al. Polysaccharide hybrid
scaffold encapsulated endogenous factors for microfracture
26. Kechagias J, Chaidas D, Vidakis N, Salonitis K, Vaxevanidis enhancement by sustainable release and cell recruitment.
NM. Key parameters controlling surface quality and Compos Part B Eng. 2024;273:111235.
dimensional accuracy: a critical review of FFF process. doi: 10.1016/j.compositesb.2024.111235
Mater Manuf Process. 2022;37(9):963-984.
doi: 10.1080/10426914.2022.2032144 34. Xue P, Tan XX, Xi HZ, et al. Low-temperature deposition 3D
printing biotin-doped PLGA/β-TCP scaffold for repair of
27. Bahraminasab M, Doostmohammadi N, Talebi A, et al.
3D printed polylactic acid/gelatin-nano-hydroxyapatite/ bone defects in osteonecrosis of femoral head. Int J Bioprint.
platelet-rich plasma scaffold for critical-sized skull defect 2024;10:1152.
regeneration. Biomed Eng Online. 2022;21:86. doi: 10.36922/ijb.1152
doi: 10.1186/s12938-022-01056-w 35. Gao X, Wang H, Luan S, Zhou G. Low-temperature
28. Wei L, Wu SH, Kuss M, et al. 3D printing of silk fibroin- printed hierarchically porous induced-biomineralization
based hybrid scaffold treated with platelet rich plasma for polyaryletherketone scaffold for bone tissue engineering.
bone tissue engineering. Bioact Mater. 2019;4:256-260. Adv Healthc Mater. 2022;11:e2200977.
doi: 10.1016/j.bioactmat.2019.09.001 doi: 10.1002/adhm.202200977
29. Liu W, Sang L, Zhang ZH, Ju SL, Wang F, Zhao YP. 36. Zhu H, Lin ZH, Luan QF, et al. Angiogenesis-promoting
Compression and resilient behavior of graded triply periodic composite TPMS bone tissue engineering scaffold
minimal surface structures with soft materials fabricated by for mandibular defect regeneration. Int J Bioprint.
fused filament fabrication. J Manuf Process. 2023;105:1-13. 2024;10(1);0153.
doi: 10.1016/j.jmapro.2023.09.034 doi: 10.36922/ijb.0153
Volume 10 Issue 5 (2024) 197 doi: 10.36922/ijb.3416

