Page 282 - IJB-10-5
P. 282
International Journal of Bioprinting A TPMS framework for complete dentures
17. Mackert J, El-Shewy M, Pannu DS, Schoenbaum TR. 28. Xue L, Atli KC, Picak S, et al. Controlling martensitic
Prosthetic complications and survival rates of metal-acrylic transformation characteristics in defect-free NiTi shape
implant fixed complete dental prostheses: a retrospective memory alloys fabricated using laser powder bed fusion
study up to 10 years. J Prosthet Dent. 2022;Inpress. and a process optimization framework. Acta Mater. 2021;
doi: 10.1016/j.prosdent.2022.06.019 215:117017.
doi: 10.1016/j.actamat.2021.117017
18. Fischer K, Stenberg T. Prospective 10-year cohort study
based on a randomized, controlled trial (RCT) on implant- 29. Zhang X-Y, Yan X-C, Fang G, Liu M. Biomechanical
supported full-arch maxillary prostheses. part II: prosthetic influence of structural variation strategies on functionally
outcomes and maintenance. Clin Implant Dent Relat Res. graded scaffolds constructed with triply periodic minimal
2013;15(4):498-508. surface. Addit Manuf. 2020;32:101015.
doi: 10.1111/j.1708-8208.2011.00383.x doi: 10.1016/j.addma.2019.101015
19. Melchels FPW, Bertoldi K, Gabbrielli R, Velders AH, Feijen 30. Novak N, Al‐Ketan O, Borovinšek M, et al. Development
J, Grijpma DW. Mathematically defined tissue engineering of novel hybrid TPMS cellular lattices and their
scaffold architectures prepared by stereolithography. mechanical characterisation. J Mater Res Technol. 2021;
Biomaterials. 2010;31(27):6909-6916. 15:1318-1329.
doi: 10.1016/j.biomaterials.2010.05.068 doi: 10.1016/j.jmrt.2021.08.092
20. Toosi S, Javid-Naderi MJ, Tamayol A, Ebrahimzadeh MH, 31. Zhang X-Y, Fang G, Leeflang S, Zadpoor AA, Zhou J.
Yaghoubian S, Mousavi Shaegh SA. Additively manufactured Topological design, permeability and mechanical behavior
porous scaffolds by design for treatment of bone defects. of additively manufactured functionally graded porous
Front Bioeng Biotechnol. 2024;11:1252636. metallic biomaterials. Acta Biomater. 2019; 84:437-452.
doi: 10.3389/fbioe.2023.1252636 doi: 10.1016/j.actbio.2018.12.013
21. Catchpole-Smith S, Sélo RRJ, Davis A, Ashcroft I, Tuck CJ, 32. Jiulu J, Siqi W, Lei Y, et al. Ni–Ti multicell interlacing gyroid
Clare AT. Thermal conductivity of TPMS lattice structures lattice structures with ultra-high hyperelastic response
manufactured via laser powder bed fusion. Addit Manuf. fabricated by laser powder bed fusion. Int J Mach Tools
2019;30(4):100846. Manuf. 2024;195:0890-6955.
doi: 10.1016/j.addma.2019.100846 doi: 10.1016/j.ijmachtools.2023.104099
22. Wei SS, Zhang JL, Zhang L, et al. Laser powder bed fusion 33. Al‐Ketan O, Lee D-W, Rowshan R, Abu Al-Rub RK.
additive manufacturing of NiTi shape memory alloys: a Functionally graded and multi-morphology sheet TPMS
review. Int J Extreme Manuf. 2023;5(3):032001. lattices: design, manufacturing, and mechanical properties.
doi: 10.1088/2631-7990/acc7d9 J Mech Behav Biomed Mater. 2019;102:103520.
doi: 10.1016/j.jmbbm.2019.103520
23. Dong Z, Han CJ, Zhao YZ, et al. Role of heterogenous
microstructure and deformation behavior in achieving 34. Castro APG, Ruben RB, Gonçalves SB, Pinheiro J, Guedes
superior strength-ductility synergy in zinc fabricated via laser JM, Fernandes PR. Numerical and experimental evaluation
powder bed fusion. Int J Extrem Manuf. 2024;6(4):045003. of TPMS Gyroid scaffolds for bone tissue engineering.
doi: 10.1088/2631-7990/ad3929 Comput Methods Biomech Biomed Engin. 2019;22(6):
567-573.
24. Kapfer SC, Hyde ST, Mecke K, Arns CH, Schröder-Turk
GE. Minimal surface scaffold designs for tissue engineering. doi: 10.1080/10255842.2019.1569638
Biomaterials. 2011;32(29):6875-6882. 35. Zhang Y-R, Du W-P, Zhou X, Yu H-y. Review of research on
doi: 10.1016/j.biomaterials.2011.06.012 the mechanical properties of the human tooth. Int J Oral Sci.
2014;6(2):61-69.
25. Dwivedi A, Khurana MK, Bala YG. Heat-treated nickel
alloys produced using laser powder bed fusion-based doi: 10.1038/ijos.2014.21
additive manufacturing methods: a review. Chinese J Mech 36. Gabrieli R, Wenger R, Mazza M, Verné E, Baino F. Design,
Eng Additive Manuf Front. 2023;2(3):100087. stereolithographic 3D printing, and characterization of
doi: 10.1016/j.cjmeam.2023.100087 TPMS scaffolds. Materials (Basel). 2024;17(3):654.
doi: 10.3390/ma17030654
26. Wu LY, Xue J, Tian X, Liu T, Li D. 3D-printed metamaterials
with versatile functionalities. Chin J Mech Eng Additive 37. Wang X, Xu S, Zhou S, et al. Topological design and additive
Manuf Front. 2023;2(3):100091. manufacturing of porous metals for bone scaffolds and
doi: 10.1016/j.cjmeam.2023.100091 orthopaedic implants: a review. Biomaterials. 2016;83:
127-141.
27. Jin Y, Zou S, Pan B, Li G, Shao L, Du J. Biomechanical
properties of cylindrical and twisted triply periodic minimal doi: 10.1016/j.biomaterials.2016.01.012
surface scaffolds fabricated by laser powder bed fusion. 38. Hu J, Wang S, Li B, Li F, Luo Z, Liu L. Efficient representation
Addit Manuf. 2022;56:102899. and optimization for TPMS-based porous structures. IEEE
doi: 10.1016/j.addma.2022.102899 Trans Vis Comput Graph. 2022;28(7):2615-2627.
Volume 10 Issue 5 (2024) 274 doi: 10.36922/ijb.3453

