Page 70 - IJB-10-5
P. 70
International Journal of Bioprinting Medical regenerative in situ bioprinting
Conflict of interest interfaces for osteoporotic osseointegration. Adv Healthc
Mater. 2022;11(11):e2102535.
The authors declare no conflicts of interest. doi: 10.1002/adhm.202102535
Author contributions 8. Yvanoff C, Willaert RG. Development of bone cell
microarrays in microfluidic chips for studying osteocyte-
Conceptualization: Xiaoli Zhao, Chengwei Hu, Jun Wu, osteoblast communication under fluid flow mechanical
Liangliang Wang, William W. Lu loading. Biofabrication. 2022;14(2):025014.
Investigation: Chengwei Hu, Chenmin Wang, Shaoquan doi: 10.1088/1758-5090/ac516e
Bian, Bo Liu, Chunyi Wen 9. Cheng RY, Eylert G, Gariepy J-M, et al. Handheld instrument
Writing – original draft: Chengwei Hu for wound-conformal delivery of skin precursor sheets
Writing – review & editing: Xiaoli Zhao, Chengwei Hu, Jun improves healing in full-thickness burns. Biofabrication.
Wu, Weichen Qi 2020;12(2):025002.
doi: 10.1088/1758-5090/ab6413
Ethics approval and consent to participate 10. Jiao T, Lian Q, Lian W, et al. Properties of collagen/sodium
Not applicable. alginate hydrogels for bioprinting of skin models. J Bionic
Eng. 2023;20(1):105-118.
Consent for publication doi: 10.1007/s42235-022-00251-8
11. Liu J, Zhou Z, Zhang M, et al. Simple and robust
Not applicable. 3D bioprinting of full-thickness human skin tissue.
Bioengineered. 2022;13(4):10087-10097.
Availability of data doi: 10.1080/21655979.2022.2063651
Not applicable. 12. Mandrycky C, Wang Z, Kim K, Kim D-H. 3D bioprinting
for engineering complex tissues. Biotechnol Adv.
References 2016;34(4):422-434.
doi: 10.1016/j.biotechadv.2015.12.011
1. Li L, Yu F, Shi J, et al. In situ repair of bone and cartilage 13. Sithole MN, Kumar P, du Toit LC, et al. A 3D bioprinted
defects using 3D scanning and 3D printing. Sci Rep. in situ conjugated-co-fabricated scaffold for potential bone
2017;7(1):9416. tissue engineering applications. J Biomed Mater Res Part A.
doi: 10.1038/s41598-017-10060-3 2018;106(5):1311-1321.
2. Singh S, Choudhury D, Yu F, Mironov V, Naing MW. In situ doi: 10.1002/jbm.a.36333
bioprinting—bioprinting from benchside to bedside? Acta 14. Kilian D, Sembdner P, Bretschneider H, et al. 3D printing
Biomater. 2020;101:14-25. of patient-specific implants for osteochondral defects:
doi: 10.1016/j.actbio.2019.08.045 workflow for an MRI-guided zonal design. Bio-Des Manuf.
3. Ozbolat IT. Bioprinting scale-up tissue and organ constructs 2021;4(4):818-832.
for transplantation. Trends Biotechnol. 2015;33(7): doi: 10.1007/s42242-021-00153-4
395-400. 15. Kurzyk A, Szumera-Cieckiewicz A, Miloszewska J,
doi: 10.1016/j.tibtech.2015.04.005 Chechlinska M. 3D modeling of normal skin and
4. Gatenholm B, Lindahl C, Brittberg M, Simonsson S. Collagen cutaneous squamous cell carcinoma. A comparative study
2A type B induction after 3D bioprinting chondrocytes in 2D cultures, spheroids, and 3D bioprinted systems.
in situ into osteoarthritic chondral tibial lesion. Cartilage. Biofabrication. 2024;16(2):025021.
2021;13(2_SUPPL):1755S-1769S. doi: 10.1088/1758-5090/ad2b06.
doi: 10.1177/1947603520903788 16. Fu Z, Hai N, Zhong Y, Sun W. Printing GelMA bioinks: a
5. Yang BW, Yin JH, Chen Y, et al. 2D-black-phosphorus- strategy for building in vitro model to study nanoparticle-
reinforced 3D-printed scaffolds: a stepwise countermeasure based minocycline release and cellular protection under
for osteosarcoma. Adv Mater. 2018;30(10):1705611. oxidative stress. Biofabrication. 2024;16(2):025040.
doi: 10.1002/adma.201705611 doi: 10.1088/1758-5090/ad30c3
6. Chow T, Wutami I, Lucarelli E, et al. Creating in vitro three- 17. Shukla P, Bera AK, Yeleswarapu S, Pati F. High throughput
dimensional tumor models: a guide for the biofabrication bioprinting using decellularized adipose tissue-based
of a primary osteosarcoma model. Tissue Eng Part B Rev. hydrogels for 3D breast cancer modeling. Macromol Biosci.
2021;27(5):514-529. 2024;24:2400035.
doi: 10.1089/ten.teb.2020.0254 doi: 10.1002/mabi.202400035
7. Li ZH, Zhao Y, Wang ZH, et al. Engineering multifunctional 18. Wu D, Pang S, Berg J, et al. Bioprinting of perfusable
hydrogel-integrated 3D printed bioactive prosthetic vascularized organ models for drug development via
Volume 10 Issue 5 (2024) 62 doi: 10.36922/ijb.3366

