Page 70 - IJB-10-5
P. 70

International Journal of Bioprinting                                  Medical regenerative in situ bioprinting




            Conflict of interest                                  interfaces for osteoporotic osseointegration.  Adv  Healthc
                                                                  Mater. 2022;11(11):e2102535.
            The authors declare no conflicts of interest.         doi: 10.1002/adhm.202102535

            Author contributions                               8.   Yvanoff C, Willaert RG. Development of bone cell
                                                                  microarrays in microfluidic chips for studying osteocyte-
            Conceptualization:  Xiaoli Zhao, Chengwei Hu, Jun Wu,   osteoblast communication under fluid flow mechanical
               Liangliang Wang, William W. Lu                     loading. Biofabrication. 2022;14(2):025014.
            Investigation:  Chengwei Hu, Chenmin Wang, Shaoquan      doi: 10.1088/1758-5090/ac516e
               Bian, Bo Liu, Chunyi Wen                        9.   Cheng RY, Eylert G, Gariepy J-M, et al. Handheld instrument
            Writing – original draft: Chengwei Hu                 for wound-conformal delivery of skin precursor sheets
            Writing – review & editing: Xiaoli Zhao, Chengwei Hu, Jun   improves healing in full-thickness burns.  Biofabrication.
               Wu, Weichen Qi                                     2020;12(2):025002.
                                                                  doi: 10.1088/1758-5090/ab6413
            Ethics approval and consent to participate         10.  Jiao T, Lian Q, Lian W, et al. Properties of collagen/sodium
            Not applicable.                                       alginate hydrogels for bioprinting of skin models. J Bionic
                                                                  Eng. 2023;20(1):105-118.
            Consent for publication                               doi: 10.1007/s42235-022-00251-8
                                                               11.  Liu J, Zhou Z, Zhang M, et al. Simple and robust
            Not applicable.                                       3D bioprinting of full-thickness human skin tissue.
                                                                  Bioengineered. 2022;13(4):10087-10097.
            Availability of data                                  doi: 10.1080/21655979.2022.2063651

            Not applicable.                                    12.  Mandrycky C, Wang Z, Kim K, Kim D-H. 3D bioprinting
                                                                  for engineering complex tissues.  Biotechnol Adv.
            References                                            2016;34(4):422-434.
                                                                  doi: 10.1016/j.biotechadv.2015.12.011
            1.   Li L, Yu F, Shi J, et al. In situ repair of bone and cartilage   13.  Sithole MN, Kumar P, du Toit LC, et al. A 3D bioprinted
               defects using 3D scanning and 3D printing.  Sci Rep.   in situ conjugated-co-fabricated scaffold for potential bone
               2017;7(1):9416.                                    tissue engineering applications. J Biomed Mater Res Part A.
               doi: 10.1038/s41598-017-10060-3                    2018;106(5):1311-1321.
            2.   Singh S, Choudhury D, Yu F, Mironov V, Naing MW. In situ      doi: 10.1002/jbm.a.36333
               bioprinting—bioprinting from benchside to bedside? Acta   14.  Kilian D, Sembdner P, Bretschneider H, et al. 3D printing
               Biomater. 2020;101:14-25.                          of patient-specific implants for osteochondral defects:
               doi: 10.1016/j.actbio.2019.08.045                  workflow for an MRI-guided zonal design. Bio-Des Manuf.
            3.   Ozbolat IT. Bioprinting scale-up tissue and organ constructs   2021;4(4):818-832.
               for transplantation.  Trends Biotechnol. 2015;33(7):      doi: 10.1007/s42242-021-00153-4
               395-400.                                        15.  Kurzyk A, Szumera-Cieckiewicz A, Miloszewska J,
               doi: 10.1016/j.tibtech.2015.04.005                 Chechlinska M. 3D modeling of normal skin and
            4.   Gatenholm B, Lindahl C, Brittberg M, Simonsson S. Collagen   cutaneous squamous cell carcinoma. A comparative study
               2A  type  B  induction  after  3D  bioprinting  chondrocytes   in 2D cultures, spheroids, and 3D bioprinted systems.
               in situ into osteoarthritic chondral tibial lesion. Cartilage.   Biofabrication. 2024;16(2):025021.
               2021;13(2_SUPPL):1755S-1769S.                      doi: 10.1088/1758-5090/ad2b06.
               doi: 10.1177/1947603520903788                   16.  Fu Z, Hai N, Zhong Y, Sun W. Printing GelMA bioinks: a
            5.   Yang BW, Yin JH, Chen Y, et al. 2D-black-phosphorus-  strategy for building in vitro model to study nanoparticle-
               reinforced 3D-printed scaffolds: a stepwise countermeasure   based minocycline release and cellular protection under
               for osteosarcoma. Adv Mater. 2018;30(10):1705611.  oxidative stress. Biofabrication. 2024;16(2):025040.
               doi: 10.1002/adma.201705611                        doi: 10.1088/1758-5090/ad30c3
            6.   Chow T, Wutami I, Lucarelli E, et al. Creating in vitro three-  17.  Shukla P, Bera AK, Yeleswarapu S, Pati F. High throughput
               dimensional tumor models: a guide for the biofabrication   bioprinting using decellularized adipose tissue-based
               of a primary osteosarcoma model. Tissue Eng Part B Rev.   hydrogels for 3D breast cancer modeling. Macromol Biosci.
               2021;27(5):514-529.                                2024;24:2400035.
               doi: 10.1089/ten.teb.2020.0254                     doi: 10.1002/mabi.202400035
            7.   Li ZH, Zhao Y, Wang ZH, et al. Engineering multifunctional   18.  Wu D, Pang S, Berg J, et al. Bioprinting of perfusable
               hydrogel-integrated 3D printed bioactive prosthetic   vascularized organ models for drug development via

            Volume 10 Issue 5 (2024)                        62                                doi: 10.36922/ijb.3366
   65   66   67   68   69   70   71   72   73   74   75