Page 73 - IJB-10-5
        P. 73
     International Journal of Bioprinting                                  Medical regenerative in situ bioprinting
            67.  Al-Kharusi G, Dunne NJ, Little S, Levingstone TJ. The   79.  Tashman JW, Shiwarski DJ, Coffin B, et al. In situ volumetric
               role of machine learning and design of experiments in the   imaging and analysis of FRESH 3D bioprinted constructs
               advancement of biomaterial and tissue engineering research.   using optical coherence tomography.  Biofabrication.
               Bioengineering (Basel). 2022;9(10):561.            2023;15(1):014102.
               doi: 10.3390/bioengineering9100561                 doi: 10.1088/1758-5090/ac975e
            68.  Albouy M, Desanlis A, Brosset S, et al. A preliminary study   80.  Kerouredan  O,  Ribot  E,  Fricain  J-C,  Devillard  R,  Miraux  S.
               for an intraoperative 3D bioprinting treatment of severe burn   Magnetic resonance imaging for tracking cellular patterns
               injuries. Plast Reconstr Surg Glob Open. 2022;10(1):e4056.  obtained by laser-assisted bioprinting. Sci Rep. 2018;8(1):15777.
               doi: 10.1097/GOX.0000000000004056                  doi: 10.1038/s41598-018-34226-9
            69.  Chen H, Ma X, Gao T, et al. Robot-assisted in situ   81.  Zhou Y, Liao S, Chu Y, et al. An injectable bioink with rapid
               bioprinting of gelatin methacrylate hydrogels with stem cells   prototyping in the air and in-situ mild polymerization for
               induces hair follicle-inclusive skin regeneration.  Biomed   3D bioprinting. Biofabrication. 2021;13(4):045026.
               Pharmacother. 2023;158:114140.                     doi: 10.1088/1758-5090/ac23e4
               doi: 10.1016/j.biopha.2022.114140
                                                               82.  Kotlarz M, Ferreira AM, Gentile P, Russell SJ, Dalgarno K.
            70.  Simeunovic A, Wolf K, Tierling K, Hoelzle DJ. A surgical robot   Droplet-based bioprinting enables the fabrication of cell-
               for intracorporeal additive manufacturing of tissue engineering   hydrogel-microfibre composite tissue precursors.  Bio-Des
               constructs. IEEE Rob Autom Lett. 2022;7(3):7495-7502.  Manuf. 2022;5(3):512-528.
               doi: 10.1109/LRA.2022.3183752                      doi: 10.1007/s42242-022-00192-5
            71.  Fortunato GM, Sigismondi S, Nicoletta M, et al. Analysis   83.  Zhao D-k, Xu H-q, Yin J, Yang H-y. Inkjet 3D bioprinting for
               of the robotic-based in situ bioprinting workflow for the   tissue engineering and pharmaceutics. J Zhejiang Univ Sci A.
               regeneration of damaged tissues through a case study.   2022;23(12):955-973.
               Bioengineering (Basel). 2023;10(5):560.            doi: 10.1631/2023.A2200569
               doi: 10.3390/bioengineering10050560
                                                               84.  Limon SM, Quigley C, Sarah R, Habib A. Advancing scaffold
            72.  Colosi C, Costantini M, Barbetta A, Dentini M. Microfluidic   porosity through a machine learning framework in extrusion
               bioprinting of heterogeneous 3D tissue constructs. Methods   based 3D bioprinting. Front Mater. 2024;10:1337485.
               Mol Biol. 2017;1612:369-380.                       doi: 10.3389/fmats.2023.1337485
               doi: 10.1007/978-1-4939-7021-6_26
                                                               85.  Qiao Q, Zhang X, Yan Z, et al. The use of machine learning
            73.  Xie M, Shi Y, Zhang C, et al. In situ 3D bioprinting with   to predict the effects of cryoprotective agents on the GelMA-
               bioconcrete bioink. Nat Commun. 2022;13(1):3597.   based bioinks  used in  extrusion  cryobioprinting.  Bio-Des
               doi: 10.1038/s41467-022-30997-y                    Manuf. 2023;6(4):464-477.
                                                                  doi: 10.1007/s42242-023-00244-4
            74.  Shi E, Lou L, Warburton L, Rubinsky B. Three-dimensional
               printing in combined cartesian and curvilinear coordinates.   86.  Huang X, Ng WL, Yeong WY. Predicting the number
               J Med Device. 2022;16(4):044502.                   of printed cells during inkjet-based bioprinting process
               doi: 10.1115/1.4055064                             based  on  droplet  velocity  profile  using  machine  learning
                                                                  approaches. J Intell Manuf. 2023;35(5).
            75.  Fortunato GM, Batoni E, Pasqua I, et al. Automatic photo-
               cross-linking system for robotic-based in situ bioprinting.      doi: 10.1007/s10845-023-02167-4
               ACS Biomater Sci Eng. 2023;9(12):6926-6934.     87.  Pagan E, Stefanek E, Seyfoori A, et al. A handheld bioprinter
               doi: 10.1021/acsbiomaterials.3c00898               for multi-material printing of complex constructs.
                                                                  Biofabrication. 2023;15(3):035012.
            76.  Kucukdeger E, Johnson BN. Closed-loop controlled
               conformal 3D printing on moving objects via tool-localized      doi: 10.1088/1758-5090/acc42c.
               object position sensing. J Manuf Processes. 2023;89:39-49.  88.  Hakimi N, Cheng R, Leng L, et al. Handheld skin printer: in
               doi: 10.1016/j.jmapro.2023.01.020.                 situ formation of planar biomaterials and tissues. Lab Chip.
                                                                  2018;18(10):1440-1451.
            77.  Yang S, Wang L, Chen Q, Xu M. In situ process monitoring
               and  automated  multi-parameter  evaluation  using  optical      doi: 10.1039/c7lc01236e.
               coherence tomography during extrusion-based bioprinting.   89.  Zhou FY, Xin LJ, Wang SY, et al. Portable handheld “SkinPen”
               Addit Manuf. 2021;47:102251.                       loaded with biomaterial ink for in situ wound healing. ACS
               doi: 10.1016/j.addma.2021.102251                   Appl Mater Interfaces. 2023;15(23):27568-27585.
                                                                  doi: 10.1021/acsami.3c02825
            78.  Yang S, Chen Q, Wang L, Xu M. In situ defect detection and
               feedback control  with  three-dimensional extrusion-based   90.  Ying G, Manriquez J, Wu D, et al. An open-source handheld
               bioprinter-associated  optical  coherence  tomography.  Int J   extruder loaded with pore-forming bioink for in situ wound
               Bioprint. 2023;9(1):47-62.                         dressing. Mater Today Bio. 2020;8:100074.
               doi: 10.18063/ijb.v9i1.624                         doi: 10.1016/j.mtbio.2020.100074
            Volume 10 Issue 5 (2024)                        65                                doi: 10.36922/ijb.3366
     	
