Page 73 - IJB-10-5
P. 73
International Journal of Bioprinting Medical regenerative in situ bioprinting
67. Al-Kharusi G, Dunne NJ, Little S, Levingstone TJ. The 79. Tashman JW, Shiwarski DJ, Coffin B, et al. In situ volumetric
role of machine learning and design of experiments in the imaging and analysis of FRESH 3D bioprinted constructs
advancement of biomaterial and tissue engineering research. using optical coherence tomography. Biofabrication.
Bioengineering (Basel). 2022;9(10):561. 2023;15(1):014102.
doi: 10.3390/bioengineering9100561 doi: 10.1088/1758-5090/ac975e
68. Albouy M, Desanlis A, Brosset S, et al. A preliminary study 80. Kerouredan O, Ribot E, Fricain J-C, Devillard R, Miraux S.
for an intraoperative 3D bioprinting treatment of severe burn Magnetic resonance imaging for tracking cellular patterns
injuries. Plast Reconstr Surg Glob Open. 2022;10(1):e4056. obtained by laser-assisted bioprinting. Sci Rep. 2018;8(1):15777.
doi: 10.1097/GOX.0000000000004056 doi: 10.1038/s41598-018-34226-9
69. Chen H, Ma X, Gao T, et al. Robot-assisted in situ 81. Zhou Y, Liao S, Chu Y, et al. An injectable bioink with rapid
bioprinting of gelatin methacrylate hydrogels with stem cells prototyping in the air and in-situ mild polymerization for
induces hair follicle-inclusive skin regeneration. Biomed 3D bioprinting. Biofabrication. 2021;13(4):045026.
Pharmacother. 2023;158:114140. doi: 10.1088/1758-5090/ac23e4
doi: 10.1016/j.biopha.2022.114140
82. Kotlarz M, Ferreira AM, Gentile P, Russell SJ, Dalgarno K.
70. Simeunovic A, Wolf K, Tierling K, Hoelzle DJ. A surgical robot Droplet-based bioprinting enables the fabrication of cell-
for intracorporeal additive manufacturing of tissue engineering hydrogel-microfibre composite tissue precursors. Bio-Des
constructs. IEEE Rob Autom Lett. 2022;7(3):7495-7502. Manuf. 2022;5(3):512-528.
doi: 10.1109/LRA.2022.3183752 doi: 10.1007/s42242-022-00192-5
71. Fortunato GM, Sigismondi S, Nicoletta M, et al. Analysis 83. Zhao D-k, Xu H-q, Yin J, Yang H-y. Inkjet 3D bioprinting for
of the robotic-based in situ bioprinting workflow for the tissue engineering and pharmaceutics. J Zhejiang Univ Sci A.
regeneration of damaged tissues through a case study. 2022;23(12):955-973.
Bioengineering (Basel). 2023;10(5):560. doi: 10.1631/2023.A2200569
doi: 10.3390/bioengineering10050560
84. Limon SM, Quigley C, Sarah R, Habib A. Advancing scaffold
72. Colosi C, Costantini M, Barbetta A, Dentini M. Microfluidic porosity through a machine learning framework in extrusion
bioprinting of heterogeneous 3D tissue constructs. Methods based 3D bioprinting. Front Mater. 2024;10:1337485.
Mol Biol. 2017;1612:369-380. doi: 10.3389/fmats.2023.1337485
doi: 10.1007/978-1-4939-7021-6_26
85. Qiao Q, Zhang X, Yan Z, et al. The use of machine learning
73. Xie M, Shi Y, Zhang C, et al. In situ 3D bioprinting with to predict the effects of cryoprotective agents on the GelMA-
bioconcrete bioink. Nat Commun. 2022;13(1):3597. based bioinks used in extrusion cryobioprinting. Bio-Des
doi: 10.1038/s41467-022-30997-y Manuf. 2023;6(4):464-477.
doi: 10.1007/s42242-023-00244-4
74. Shi E, Lou L, Warburton L, Rubinsky B. Three-dimensional
printing in combined cartesian and curvilinear coordinates. 86. Huang X, Ng WL, Yeong WY. Predicting the number
J Med Device. 2022;16(4):044502. of printed cells during inkjet-based bioprinting process
doi: 10.1115/1.4055064 based on droplet velocity profile using machine learning
approaches. J Intell Manuf. 2023;35(5).
75. Fortunato GM, Batoni E, Pasqua I, et al. Automatic photo-
cross-linking system for robotic-based in situ bioprinting. doi: 10.1007/s10845-023-02167-4
ACS Biomater Sci Eng. 2023;9(12):6926-6934. 87. Pagan E, Stefanek E, Seyfoori A, et al. A handheld bioprinter
doi: 10.1021/acsbiomaterials.3c00898 for multi-material printing of complex constructs.
Biofabrication. 2023;15(3):035012.
76. Kucukdeger E, Johnson BN. Closed-loop controlled
conformal 3D printing on moving objects via tool-localized doi: 10.1088/1758-5090/acc42c.
object position sensing. J Manuf Processes. 2023;89:39-49. 88. Hakimi N, Cheng R, Leng L, et al. Handheld skin printer: in
doi: 10.1016/j.jmapro.2023.01.020. situ formation of planar biomaterials and tissues. Lab Chip.
2018;18(10):1440-1451.
77. Yang S, Wang L, Chen Q, Xu M. In situ process monitoring
and automated multi-parameter evaluation using optical doi: 10.1039/c7lc01236e.
coherence tomography during extrusion-based bioprinting. 89. Zhou FY, Xin LJ, Wang SY, et al. Portable handheld “SkinPen”
Addit Manuf. 2021;47:102251. loaded with biomaterial ink for in situ wound healing. ACS
doi: 10.1016/j.addma.2021.102251 Appl Mater Interfaces. 2023;15(23):27568-27585.
doi: 10.1021/acsami.3c02825
78. Yang S, Chen Q, Wang L, Xu M. In situ defect detection and
feedback control with three-dimensional extrusion-based 90. Ying G, Manriquez J, Wu D, et al. An open-source handheld
bioprinter-associated optical coherence tomography. Int J extruder loaded with pore-forming bioink for in situ wound
Bioprint. 2023;9(1):47-62. dressing. Mater Today Bio. 2020;8:100074.
doi: 10.18063/ijb.v9i1.624 doi: 10.1016/j.mtbio.2020.100074
Volume 10 Issue 5 (2024) 65 doi: 10.36922/ijb.3366

