Page 72 - IJB-10-5
P. 72

International Journal of Bioprinting                                  Medical regenerative in situ bioprinting




            42.  Ding H, Chang RC. Simulating image-guided in situ      doi: 10.1002/adhm.202002152
               bioprinting of a skin graft onto a phantom burn wound bed.   55.  Di Bella C, Duchi S, O’Connell CD, et al. In situ handheld
               Addit Manuf. 2018;22:708-719.                      three-dimensional bioprinting for cartilage regeneration. J
               doi: 10.1016/j.addma.2018.06.022
                                                                  Tissue Eng Regen Med. 2018;12(3):611-621.
            43.  Liu Y, Luo X, Wu W, et al. Dual cure (thermal/photo)      doi: 10.1002/term.2476
               composite hydrogel derived from chitosan/collagen for in   56.  Duchi S, Onofrillo C, O’Connell CD, et al. Handheld co-
               situ 3D bioprinting. Int J Biol Macromol. 2021;182:689-700.  axial bioprinting: application to in situ surgical cartilage
               doi: 10.1016/j.ijbiomac.2021.04.058
                                                                  repair. Sci Rep. 2017;7(1):5837.
            44.  Chen Y, Zhang J, Liu X, et al. Noninvasive in vivo 3D      doi: 10.1038/s41598-017-05699-x
               bioprinting. Sci Adv. 2020;6(23):eaba7406.      57.  Onofrillo C, Duchi S, O’Connell CD, et al. Biofabrication of
               doi: 10.1126/sciadv.aba7406
                                                                  human articular cartilage: a path towards the development
            45.  Urciuolo A, Poli I, Brandolino L, et al. Intravital three-  of a clinical treatment. Biofabrication. 2018;10(4):045006.
               dimensional bioprinting. Nat Biomed Eng. 2020;4(9):901-915.     doi: 10.1088/1758-5090/aad8d9
               doi: 10.1038/s41551-020-0568-z
                                                               58.  Mostafavi A, Abdullah T, Russell CS, et al. In situ printing of
            46.  Chen H, Zhang H, Shen Y, et al. Instant in-situ tissue repair   scaffolds for reconstruction of bone defects. Acta Biomater.
               by biodegradable PLA/gelatin nanofibrous membrane using   2021;127:313-326.
               a 3D printed handheld electrospinning device. Front Bioeng      doi: 10.1016/j.actbio.2021.03.009
               Biotechnol. 2021;9:684105.                      59.  Campos DFD, Zhang S, Kreimendahl F, et al. Hand-held
               doi: 10.3389/fbioe.2021.684105
                                                                  bioprinting for de novo vascular formation applicable to dental
            47.  Tianyuan Y, Yi Z, Zhian J, Yuanyuan L. A novel handheld   pulp regeneration. Connect Tissue Res. 2020;61(2):205-215.
               device: application to in situ bioprinting compound dressing      doi: 10.1080/03008207.2019.1640217
               for the treatment of wound. Paper presented at: Journal of   60.  Zhou C, Yang Y, Wang J, et al. Ferromagnetic soft catheter
               Physics: Conference Series; 2021.                  robots for minimally invasive bioprinting.  Nat Commun.
               doi: 10.1088/1742-6596/1965/1/012059
                                                                  2021;12(1):5072.
            48.  Li X, Lian Q, Li DC, Xin H, Jia SH. Development of a robotic      doi: 10.1038/s41467-021-25386-w
               arm based hydrogel additive manufacturing system for in-  61.  Abdelrahim AA, Hong S, Song JM. Integrative in situ
               situ printing. Appl Sci. 2017;7(1):73.             photodynamic therapy-induced cell death measurement
               doi: 10.3390/app7010073
                                                                  of 3D-bioprinted MCF-7 tumor spheroids.  Anal Chem.
            49.  Keriquel V, Guillemot F, Arnault I, et al. In vivo bioprinting   2022;94(40):13936-13943.
               for computer-and robotic-assisted medical intervention:      doi: 10.1021/acs.analchem.2c03022
               preliminary study in mice. Biofabrication. 2010;2(1):014101.  62.  Chaudhry MS, Czekanski A. Surface slicing and toolpath
               doi: 10.1088/1758-5082/2/1/014101
                                                                  planning  for  in-situ  bioprinting  of  skin  implants.
            50.  Zhu  Z,  Guo  S-Z,  Hirdler  T,  et  al.  3D  printed  functional   Biofabrication. 2024;16(2):025030.
               and biological materials on moving freeform surfaces.       doi: 10.1088/1758-5090/ad30c4
               Adv Mater. 2018;30(23):e1707495.                63.  Zhao M,  Wang J, Zhang  J, et  al. Functionalizing multi-
               doi: 10.1002/adma.201707495
                                                                  component bioink with platelet-rich plasma for customized
            51.  Adib AA, Sheikhi A, Shahhosseini M, et al. Direct-write 3D   in-situ bilayer bioprinting for wound healing. Mater Today
               printing and characterization of a GelMA-based biomaterial   Bio. 2022;16:100334.
               for intracorporeal tissue engineering.  Biofabrication.      doi: 10.1016/j.mtbio.2022.100334
               2020;12(4):045006.                              64.  Liu X, Wang X, Zhang L, et al. 3D liver tissue model with
               doi: 10.1088/1758-5090/ab97a1
                                                                  branched vascular networks by multimaterial bioprinting.
            52.  Skardal A, Mack D, Kapetanovic E, et al. Bioprinted   Adv Healthcare Mater. 2021;10(23):e2101405.
               amniotic fluid-derived stem cells accelerate healing of large      doi: 10.1002/adhm.202101405
               skin wounds. Stem Cells Transl Med. 2012;1(11):792-802.  65.  Zhao W, Chen H, Zhang Y, et al. Adaptive multi-degree-of-
               doi: 10.5966/sctm.2012-0088
                                                                  freedom in situ bioprinting robot for hair-follicle-inclusive
            53.  Russell CS, Mostafavi A, Quint JP, et al. In situ printing of   skin repair: A preliminary study conducted in mice. Bioeng
               adhesive hydrogel scaffolds for the treatment of skeletal   Transl Med. 2022;7(3):e10303.
               muscle injuries. ACS Appl Bio Mater. 2020;3(3):1568-1579.     doi: 10.1002/btm2.10303
               doi: 10.1021/acsabm.9b01176
                                                               66.  Ma K, Zhao T, Yang L, et al. Application of robotic-assisted
            54.  Quint JP, Mostafavi A, Endo Y, et al. In vivo printing of   in situ 3D printing in cartilage regeneration with HAMA
               nanoenabled scaffolds for the treatment of skeletal muscle   hydrogel: an in vivo study. J Adv Res. 2020;23:123-132.
               injuries. Adv Healthc Mater. 2021;10(10):e2002152.     doi: 10.1016/j.jare.2020.01.010


            Volume 10 Issue 5 (2024)                        64                                doi: 10.36922/ijb.3366
   67   68   69   70   71   72   73   74   75   76   77