Page 72 - IJB-10-5
P. 72
International Journal of Bioprinting Medical regenerative in situ bioprinting
42. Ding H, Chang RC. Simulating image-guided in situ doi: 10.1002/adhm.202002152
bioprinting of a skin graft onto a phantom burn wound bed. 55. Di Bella C, Duchi S, O’Connell CD, et al. In situ handheld
Addit Manuf. 2018;22:708-719. three-dimensional bioprinting for cartilage regeneration. J
doi: 10.1016/j.addma.2018.06.022
Tissue Eng Regen Med. 2018;12(3):611-621.
43. Liu Y, Luo X, Wu W, et al. Dual cure (thermal/photo) doi: 10.1002/term.2476
composite hydrogel derived from chitosan/collagen for in 56. Duchi S, Onofrillo C, O’Connell CD, et al. Handheld co-
situ 3D bioprinting. Int J Biol Macromol. 2021;182:689-700. axial bioprinting: application to in situ surgical cartilage
doi: 10.1016/j.ijbiomac.2021.04.058
repair. Sci Rep. 2017;7(1):5837.
44. Chen Y, Zhang J, Liu X, et al. Noninvasive in vivo 3D doi: 10.1038/s41598-017-05699-x
bioprinting. Sci Adv. 2020;6(23):eaba7406. 57. Onofrillo C, Duchi S, O’Connell CD, et al. Biofabrication of
doi: 10.1126/sciadv.aba7406
human articular cartilage: a path towards the development
45. Urciuolo A, Poli I, Brandolino L, et al. Intravital three- of a clinical treatment. Biofabrication. 2018;10(4):045006.
dimensional bioprinting. Nat Biomed Eng. 2020;4(9):901-915. doi: 10.1088/1758-5090/aad8d9
doi: 10.1038/s41551-020-0568-z
58. Mostafavi A, Abdullah T, Russell CS, et al. In situ printing of
46. Chen H, Zhang H, Shen Y, et al. Instant in-situ tissue repair scaffolds for reconstruction of bone defects. Acta Biomater.
by biodegradable PLA/gelatin nanofibrous membrane using 2021;127:313-326.
a 3D printed handheld electrospinning device. Front Bioeng doi: 10.1016/j.actbio.2021.03.009
Biotechnol. 2021;9:684105. 59. Campos DFD, Zhang S, Kreimendahl F, et al. Hand-held
doi: 10.3389/fbioe.2021.684105
bioprinting for de novo vascular formation applicable to dental
47. Tianyuan Y, Yi Z, Zhian J, Yuanyuan L. A novel handheld pulp regeneration. Connect Tissue Res. 2020;61(2):205-215.
device: application to in situ bioprinting compound dressing doi: 10.1080/03008207.2019.1640217
for the treatment of wound. Paper presented at: Journal of 60. Zhou C, Yang Y, Wang J, et al. Ferromagnetic soft catheter
Physics: Conference Series; 2021. robots for minimally invasive bioprinting. Nat Commun.
doi: 10.1088/1742-6596/1965/1/012059
2021;12(1):5072.
48. Li X, Lian Q, Li DC, Xin H, Jia SH. Development of a robotic doi: 10.1038/s41467-021-25386-w
arm based hydrogel additive manufacturing system for in- 61. Abdelrahim AA, Hong S, Song JM. Integrative in situ
situ printing. Appl Sci. 2017;7(1):73. photodynamic therapy-induced cell death measurement
doi: 10.3390/app7010073
of 3D-bioprinted MCF-7 tumor spheroids. Anal Chem.
49. Keriquel V, Guillemot F, Arnault I, et al. In vivo bioprinting 2022;94(40):13936-13943.
for computer-and robotic-assisted medical intervention: doi: 10.1021/acs.analchem.2c03022
preliminary study in mice. Biofabrication. 2010;2(1):014101. 62. Chaudhry MS, Czekanski A. Surface slicing and toolpath
doi: 10.1088/1758-5082/2/1/014101
planning for in-situ bioprinting of skin implants.
50. Zhu Z, Guo S-Z, Hirdler T, et al. 3D printed functional Biofabrication. 2024;16(2):025030.
and biological materials on moving freeform surfaces. doi: 10.1088/1758-5090/ad30c4
Adv Mater. 2018;30(23):e1707495. 63. Zhao M, Wang J, Zhang J, et al. Functionalizing multi-
doi: 10.1002/adma.201707495
component bioink with platelet-rich plasma for customized
51. Adib AA, Sheikhi A, Shahhosseini M, et al. Direct-write 3D in-situ bilayer bioprinting for wound healing. Mater Today
printing and characterization of a GelMA-based biomaterial Bio. 2022;16:100334.
for intracorporeal tissue engineering. Biofabrication. doi: 10.1016/j.mtbio.2022.100334
2020;12(4):045006. 64. Liu X, Wang X, Zhang L, et al. 3D liver tissue model with
doi: 10.1088/1758-5090/ab97a1
branched vascular networks by multimaterial bioprinting.
52. Skardal A, Mack D, Kapetanovic E, et al. Bioprinted Adv Healthcare Mater. 2021;10(23):e2101405.
amniotic fluid-derived stem cells accelerate healing of large doi: 10.1002/adhm.202101405
skin wounds. Stem Cells Transl Med. 2012;1(11):792-802. 65. Zhao W, Chen H, Zhang Y, et al. Adaptive multi-degree-of-
doi: 10.5966/sctm.2012-0088
freedom in situ bioprinting robot for hair-follicle-inclusive
53. Russell CS, Mostafavi A, Quint JP, et al. In situ printing of skin repair: A preliminary study conducted in mice. Bioeng
adhesive hydrogel scaffolds for the treatment of skeletal Transl Med. 2022;7(3):e10303.
muscle injuries. ACS Appl Bio Mater. 2020;3(3):1568-1579. doi: 10.1002/btm2.10303
doi: 10.1021/acsabm.9b01176
66. Ma K, Zhao T, Yang L, et al. Application of robotic-assisted
54. Quint JP, Mostafavi A, Endo Y, et al. In vivo printing of in situ 3D printing in cartilage regeneration with HAMA
nanoenabled scaffolds for the treatment of skeletal muscle hydrogel: an in vivo study. J Adv Res. 2020;23:123-132.
injuries. Adv Healthc Mater. 2021;10(10):e2002152. doi: 10.1016/j.jare.2020.01.010
Volume 10 Issue 5 (2024) 64 doi: 10.36922/ijb.3366

