Page 74 - IJB-10-5
P. 74
International Journal of Bioprinting Medical regenerative in situ bioprinting
91. Mostafavi A, Samandari M, Karvar M, et al. Colloidal 103. Chen X, Ranjan VD, Liu S, et al. In situ formation of
multiscale porous adhesive (bio)inks facilitate scaffold 3D conductive and cell-laden graphene hydrogel for
integration. Appl Phys Rev. 2021;8(4):041415. electrically regulating cellular behavior. Macromol Biosci.
doi: 10.1063/5.0062823 2021;21(4):e2000374.
doi: 10.1002/mabi.202000374
92. Shi Y, Tang S, Yuan X, et al. In situ 4D printing of
polyelectrolyte/magnetic composites for sutureless gastric 104. Li C, Faulkner-Jones A, Dun AR, et al. Rapid formation
perforation sealing. Adv Mater. 2023;36:2307601. of a supramolecular polypeptide-DNA hydrogel for in situ
doi: 10.1002/adma.202307601 three-dimensional multilayer bioprinting. Angew Chem Int
93. Yang Y, Yu Z, Lu X, et al. Minimally invasive bioprinting for Ed. 2015;54(13):3957-3961.
in situ liver regeneration. Bioact Mater. 2023;26:465-477. doi: 10.1002/anie.201411383
doi: 10.1016/j.bioactmat.2023.03.011 105. Moeinzadeh S, Park Y, Lin S, Yang YP. In-situ stable injectable
94. Debbi L, Machour M, Dahis D, et al. Ultrasound mediated collagen-based hydrogels for cell and growth factor delivery.
polymerization for cell delivery, drug delivery, and 3D Materialia (Oxf). 2021;15:100954.
printing. Small Methods. 2024:2301197. doi: 10.1016/j.mtla.2020.100954
doi: 10.1002/smtd.202301197 106. Alruwaili M, Lopez JA, McCarthy K, Reynaud EG, Rodriguez
95. Zhao W, Hu C, Lin S, et al. A closed-loop minimally invasive BJ. Liquid-phase 3D bioprinting of gelatin alginate hydrogels:
3D printing strategy with robust trocar identification and influence of printing parameters on hydrogel line width and
adaptive alignment. Addit Manuf. 2023;73:103701. layer height. Bio-Des Manuf. 2019;2(3):172-180.
doi: 10.1016/j.addma.2023.103701 doi: 10.1007/s42242-019-00043-w
96. Goker M, Derici US, Gokyer S, et al. Spatial growth factor 107. Handral HK, Natu VP, Cao T, et al. Emerging trends and
delivery for 3D bioprinting of vascularized bone with prospects of electroconductive bioinks for cell-laden and
adipose-derived stem/stromal cells as a single cell source. functional 3D bioprinting. Bio-Des Manuf. 2022;5(2):
ACS Biomater Sci Eng. 2024;10(3):1607-1619. 396-411.
doi: 10.1021/acsbiomaterials.3c01222 doi: 10.1007/s42242-021-00169-w
97. Enrico A, Voulgaris D, Ostmans R, et al. 3D microvascularized 108. Lai S, Wu T, Shi C, et al. Triple-layered core-shell fiber
tissue models by laser-based cavitation molding of collagen. dressings with enduring platelet conservation and sustained
Adv Mater. 2022;34(11):e2109823. growth factor release abilities for chronic wound healing.
doi: 10.1002/adma.202109823 Regener Biomater. 2024;11:rbae034.
doi: 10.1093/rb/rbae034
98. Hu Y, Xiong Y, Zhu Y, et al. Copper-epigallocatechin gallate
enhances therapeutic effects of 3D-printed dermal scaffolds 109. Kang MS, Kwon M, Lee SY, et al. In situ crosslinkable
in mitigating diabetic wound scarring. ACS Appl Mater collagen-based hydrogels for 3D printing of dermis-mimetic
Interfaces. 2023;15(32):38230-38246. constructs. ECS J Solid State Sci Technol. 2022;11(4):
doi: 10.1021/acsami.3c04733 045014.
doi: 10.1149/2162-8777/ac6897
99. Lu S, Wang X, Li W, Zu Y, Xiao J. Injectable 3D-printed
porous scaffolds for adipose stem cell delivery and 110. Kang MS, Kang JI, Thi PL, et al. Three-dimensional printable
endometrial regeneration. Adv Funct Mater. 2023;33(34): gelatin hydrogels incorporating graphene oxide to enable
2303368. spontaneous myogenic differentiation. ACS Macro Lett.
doi: 10.1002/adfm.202303368 2021;10(4):426-432.
doi: 10.1021/acsmacrolett.0c00845
100. Ouyang L, Armstrong JPK, Chen Q, Lin Y, Stevens MM.
Void-free 3D bioprinting for in situ endothelialization and 111. Miri AK, Nieto D, Iglesias L, et al. Microfluidics-enabled
microfluidic perfusion. Adv Funct Mater. 2020;30(1):1908349. multimaterial maskless stereolithographic bioprinting. Adv
doi: 10.1002/adfm.201908349 Mater. 2018;30(27):e1800242.
doi: 10.1002/adma.201800242
101. Muhammad M, Willems C, Rodriguez-Fernandez J,
Gallego-Ferrer G, Groth T. Synthesis and characterization 112. Hwangbo H, Lee H, Jin E-J, et al. Bio-printing of aligned
of oxidized polysaccharides for in situ forming hydrogels. GelMa-based cell-laden structure for muscle tissue
Biomolecules. 2020;10(8):1185. regeneration. Bioact Mater. 2021;8:57-70.
doi: 10.3390/biom10081185 doi: 10.1016/j.bioactmat.2021.06.031
102. Baptista M, Joukhdar H, Alcala-Orozco CR, et al. Silk 113. Jalandhra GK, Molley TG, Hung T-t, Roohani I, Kilian
fibroin photo-lyogels containing microchannels as a KA. In situ formation of osteochondral interfaces through
biomaterial platform for in situ tissue engineering. Biomater “bone-ink” printing in tailored microgel suspensions. Acta
Sci. 2020;8(24):7093-7105. Biomater. 2023;156:75-87.
doi: 10.1039/d0bm01010c doi: 10.1016/j.actbio.2022.08.052
Volume 10 Issue 5 (2024) 66 doi: 10.36922/ijb.3366

