Page 74 - IJB-10-5
P. 74

International Journal of Bioprinting                                  Medical regenerative in situ bioprinting




            91.  Mostafavi  A,  Samandari  M,  Karvar  M,  et  al.  Colloidal   103. Chen X, Ranjan VD, Liu S, et al. In situ formation of
               multiscale porous adhesive (bio)inks facilitate scaffold   3D  conductive  and cell-laden  graphene  hydrogel  for
               integration. Appl Phys Rev. 2021;8(4):041415.      electrically regulating cellular behavior.  Macromol Biosci.
               doi: 10.1063/5.0062823                             2021;21(4):e2000374.
                                                                  doi: 10.1002/mabi.202000374
            92.  Shi Y, Tang S, Yuan X, et al. In situ 4D printing of
               polyelectrolyte/magnetic composites for sutureless gastric   104. Li C, Faulkner-Jones A, Dun AR, et al. Rapid formation
               perforation sealing. Adv Mater. 2023;36:2307601.   of a supramolecular polypeptide-DNA hydrogel for in situ
               doi: 10.1002/adma.202307601                        three-dimensional multilayer bioprinting. Angew Chem Int
            93.  Yang Y, Yu Z, Lu X, et al. Minimally invasive bioprinting for   Ed. 2015;54(13):3957-3961.
               in situ liver regeneration. Bioact Mater. 2023;26:465-477.     doi: 10.1002/anie.201411383
               doi: 10.1016/j.bioactmat.2023.03.011            105. Moeinzadeh S, Park Y, Lin S, Yang YP. In-situ stable injectable
            94.  Debbi L, Machour M, Dahis D, et al. Ultrasound mediated   collagen-based hydrogels for cell and growth factor delivery.
               polymerization for cell delivery,  drug delivery, and 3D   Materialia (Oxf). 2021;15:100954.
               printing. Small Methods. 2024:2301197.             doi: 10.1016/j.mtla.2020.100954
               doi: 10.1002/smtd.202301197                     106. Alruwaili M, Lopez JA, McCarthy K, Reynaud EG, Rodriguez
            95.  Zhao W, Hu C, Lin S, et al. A closed-loop minimally invasive   BJ. Liquid-phase 3D bioprinting of gelatin alginate hydrogels:
               3D printing strategy with robust trocar identification and   influence of printing parameters on hydrogel line width and
               adaptive alignment. Addit Manuf. 2023;73:103701.   layer height. Bio-Des Manuf. 2019;2(3):172-180.
               doi: 10.1016/j.addma.2023.103701                   doi: 10.1007/s42242-019-00043-w
            96.  Goker M, Derici US, Gokyer S, et al. Spatial growth factor   107. Handral HK, Natu VP, Cao T, et al. Emerging trends and
               delivery for 3D bioprinting of vascularized bone with   prospects of electroconductive bioinks for cell-laden and
               adipose-derived stem/stromal cells as a single cell source.   functional  3D  bioprinting.  Bio-Des Manuf.  2022;5(2):
               ACS Biomater Sci Eng. 2024;10(3):1607-1619.        396-411.
               doi: 10.1021/acsbiomaterials.3c01222               doi: 10.1007/s42242-021-00169-w
            97.  Enrico A, Voulgaris D, Ostmans R, et al. 3D microvascularized   108. Lai S, Wu T, Shi C, et al. Triple-layered core-shell fiber
               tissue models by laser-based cavitation molding of collagen.   dressings with enduring platelet conservation and sustained
               Adv Mater. 2022;34(11):e2109823.                   growth factor release abilities for chronic wound healing.
               doi: 10.1002/adma.202109823                        Regener Biomater. 2024;11:rbae034.
                                                                  doi: 10.1093/rb/rbae034
            98.  Hu Y, Xiong Y, Zhu Y, et al. Copper-epigallocatechin gallate
               enhances therapeutic effects of 3D-printed dermal scaffolds   109. Kang MS, Kwon M, Lee SY, et al. In situ crosslinkable
               in mitigating diabetic wound scarring.  ACS  Appl Mater   collagen-based hydrogels for 3D printing of dermis-mimetic
               Interfaces. 2023;15(32):38230-38246.               constructs.  ECS J Solid State Sci Technol.  2022;11(4):
               doi: 10.1021/acsami.3c04733                        045014.
                                                                  doi: 10.1149/2162-8777/ac6897
            99.  Lu S, Wang X, Li W, Zu Y, Xiao J. Injectable 3D-printed
               porous scaffolds for adipose stem cell delivery and   110. Kang MS, Kang JI, Thi PL, et al. Three-dimensional printable
               endometrial regeneration.  Adv Funct Mater. 2023;33(34):   gelatin hydrogels incorporating graphene oxide to enable
               2303368.                                           spontaneous myogenic differentiation.  ACS Macro Lett.
               doi: 10.1002/adfm.202303368                        2021;10(4):426-432.
                                                                  doi: 10.1021/acsmacrolett.0c00845
            100.  Ouyang L, Armstrong JPK, Chen Q, Lin Y, Stevens MM.
               Void-free 3D bioprinting for in situ endothelialization and   111. Miri AK, Nieto D, Iglesias L, et al. Microfluidics-enabled
               microfluidic perfusion. Adv Funct Mater. 2020;30(1):1908349.  multimaterial maskless stereolithographic bioprinting. Adv
               doi: 10.1002/adfm.201908349                        Mater. 2018;30(27):e1800242.
                                                                  doi: 10.1002/adma.201800242
            101. Muhammad M, Willems C, Rodriguez-Fernandez J,
               Gallego-Ferrer G, Groth T. Synthesis and characterization   112. Hwangbo H, Lee H, Jin E-J, et al. Bio-printing of aligned
               of oxidized polysaccharides for in situ forming hydrogels.   GelMa-based cell-laden structure for muscle tissue
               Biomolecules. 2020;10(8):1185.                     regeneration. Bioact Mater. 2021;8:57-70.
               doi: 10.3390/biom10081185                          doi: 10.1016/j.bioactmat.2021.06.031
            102. Baptista M, Joukhdar H, Alcala-Orozco CR, et al. Silk   113. Jalandhra GK, Molley TG, Hung T-t, Roohani I, Kilian
               fibroin photo-lyogels containing microchannels as a   KA. In situ formation of osteochondral interfaces through
               biomaterial platform for in situ tissue engineering. Biomater   “bone-ink” printing in tailored microgel suspensions. Acta
               Sci. 2020;8(24):7093-7105.                         Biomater. 2023;156:75-87.
               doi: 10.1039/d0bm01010c                            doi: 10.1016/j.actbio.2022.08.052


            Volume 10 Issue 5 (2024)                        66                                doi: 10.36922/ijb.3366
   69   70   71   72   73   74   75   76   77   78   79