Page 71 - IJB-10-5
P. 71
International Journal of Bioprinting Medical regenerative in situ bioprinting
sacrificial-free direct ink writing. Adv Funct Mater. 30. Nuutila K, Samandari M, Endo Y, et al. In vivo printing of
2024:2314171. growth factor-eluting adhesive scaffolds improves wound
doi: 10.1002/adfm.202314171 healing. Bioact Mater. 2022;8:296-308.
doi: 10.1016/j.bioactmat.2021.06.030
19. Gvaramia D, Fisch P, Flegeau K, et al. Evaluation of bioprinted
autologous cartilage grafts in an immunocompetent rabbit 31. Wu Y, Ravnic DJ, Ozbolat IT. Intraoperative bioprinting:
model. Adv Ther. 2024;7(6):2300441. repairing tissues and organs in a surgical setting. Trends
doi: 10.1002/adtp.202300441 Biotechnol. 2020;38(6):594-605.
doi: 10.1016/j.tibtech.2020.01.004
20. Bhar B, Das E, Manikumar K, Mandal BB. 3D bioprinted
human skin model recapitulating native-like tissue 32. Chen H, Zhang Y, Zhou D, et al. Mechanical engineering
maturation and immunocompetence as an advanced of hair follicle regeneration by in situ bioprinting. Biomater
platform for skin sensitization assessment. Adv Healthc Adv. 2022;142:213127.
Mater. 2024;13(15):e2303312. doi: 10.1016/j.bioadv.2022.213127
doi: 10.1002/adhm.202303312
33. Gaharwar AK, Singh I, Khademhosseini A. Engineered
21. Di Buduo CA, Lunghi M, Kuzmenko V, et al. Bioprinting biomaterials for in situ tissue regeneration. Nat Rev Mater.
soft 3D models of hematopoiesis using natural silk fibroin- 2020;5(9):686-705.
based bioink efficiently supports platelet differentiation. Adv doi: 10.1038/s41578-020-0209-x
Sci. 2024;11(18):2308276. 34. Levin AA, Karalkin PA, V. Koudan E, et al. Commercial
doi: 10.1002/advs.202308276
articulated collaborative in situ 3D bioprinter for skin
22. Edri S, Frisch AN, Safina D, et al. 3D bioprinting of wound healing. Int J Bioprint. 2023;9(2):380-393.
multicellular stem cell-derived constructs to model doi: 10.18063/ijb.v9i2.675
pancreatic cell differentiation. Adv Funct Mater. 35. Li L, Shi J, Ma K, et al. Robotic in situ 3D bio-printing
2024;34:2315488. technology for repairing large segmental bone defects. J Adv
doi: 10.1002/adfm.202315488
Res. 2021;30:75-84.
23. Li H, Cheng F, Orgill DP, Yao J, Zhang YS. Handheld doi: 10.1016/j.jare.2020.11.011
bioprinting strategies for in situ wound dressing. In: Jang J, 36. Moncal KK, Gudapati H, Godzik KP, et al. Intra-operative
ed. Essays in Biochemistry. Vol. 65. London: Portland Press; bioprinting of hard, soft, and hard/soft composite tissues
2021:533-543. for craniomaxillofacial reconstruction. Adv Funct Mater.
doi: 10.1042/EBC20200098
2021;31(29):2010858.
24. Thai MT, Phan PT, Tran HA, et al. Advanced soft robotic doi: 10.1002/adfm.202010858
system for in situ 3D bioprinting and endoscopic surgery. 37. Albanna M, Binder KW, Murphy SV, et al. In situ
Adv Sci. 2023;10(12):2205656. bioprinting of autologous skin cells accelerates wound
doi: 10.1002/advs.202205656
healing of extensive excisional full-thickness wounds.
25. Agostinacchio F, Mu X, Dire S, Motta A, Kaplan DL. In situ Sci Rep. 2019;9(1):1856
3D printing: opportunities with silk inks. Trends Biotechnol. doi: 10.1038/s41598-018-38366-w
2021;39(7):719-730. 38. Zhao W, Hu C, Xu T, et al. Subaqueous bioprinting:
doi: 10.1016/j.tibtech.2020.11.003
a novel strategy for fetal membrane repair with 7-axis
26. Akilbekova D, Mektepbayeva D. Chapter 5-patient specific robot-assisted minimally invasive surgery. Adv Funct Mater.
in situ 3D printing. In: Kalaskar DM, ed. 3D Printing in 2022;32(51):2207496.
Medicine. Cambridge: Woodhead Publishing; 2017:91-113. doi: 10.1002/adfm.202207496
doi: 10.1016/b978-0-08-100717-4.00004-1
39. Christensen K, Compaan A, Chai W, Xia G, Huang Y.
27. Campbell PG, Weiss LE. Tissue engineering with the aid of In situ printing-then-mixing for biological structure
inkjet printers. Expert Opin Biol Ther. 2007;7(8):1123-1127. fabrication using intersecting jets. ACS Biomater Sci Eng.
doi: 10.1517/14712598.7.8.1123 2017;3(12):3687-3694.
doi: 10.1021/acsbiomaterials.7b00752
28. Samandari M, Mostafavi A, Quint J, Memic A, Tamayol
A. In situ bioprinting: intraoperative implementation of 40. Keriquel V, Oliveira H, Remy M, et al. In situ printing of
regenerative medicine. Trends Biotechnol. 2022;40(10): mesenchymal stromal cells, by laser-assisted bioprinting, for in
1229-1247. vivo bone regeneration applications. Sci Rep. 2017;7(1):1778.
doi: 10.1016/j.tibtech.2022.03.009 doi: 10.1038/s41598-017-01914-x
29. Zhao W, Xu T. Preliminary engineering for in situ in vivo 41. Kerouredan O, Hakobyan D, Remy M, et al. In
bioprinting: a novel micro bioprinting platform for in situ situ prevascularization designed by laser-assisted
in vivo bioprinting at a gastric wound site. Biofabrication. bioprinting: effect on bone regeneration. Biofabrication.
2020;12(4):045020. 2019;11(4):045002.
doi: 10.1088/1758-5090/aba4ff doi: 10.1088/1758-5090/ab2620
Volume 10 Issue 5 (2024) 63 doi: 10.36922/ijb.3366

