Page 71 - IJB-10-5
        P. 71
     International Journal of Bioprinting                                  Medical regenerative in situ bioprinting
               sacrificial-free direct ink writing.  Adv  Funct  Mater.   30.  Nuutila K, Samandari M, Endo Y, et al. In vivo printing of
               2024:2314171.                                      growth factor-eluting adhesive scaffolds improves wound
               doi: 10.1002/adfm.202314171                        healing. Bioact Mater. 2022;8:296-308.
                                                                  doi: 10.1016/j.bioactmat.2021.06.030
            19.  Gvaramia D, Fisch P, Flegeau K, et al. Evaluation of bioprinted
               autologous cartilage grafts in an immunocompetent rabbit   31.  Wu Y, Ravnic DJ, Ozbolat IT. Intraoperative bioprinting:
               model. Adv Ther. 2024;7(6):2300441.                repairing tissues and organs in a surgical setting.  Trends
               doi: 10.1002/adtp.202300441                        Biotechnol. 2020;38(6):594-605.
                                                                  doi: 10.1016/j.tibtech.2020.01.004
            20.  Bhar B, Das E, Manikumar K, Mandal BB. 3D bioprinted
               human skin model recapitulating native-like tissue   32.  Chen H, Zhang Y, Zhou D, et al. Mechanical engineering
               maturation and immunocompetence as an advanced     of hair follicle regeneration by in situ bioprinting. Biomater
               platform for skin sensitization assessment.  Adv Healthc   Adv. 2022;142:213127.
               Mater. 2024;13(15):e2303312.                       doi: 10.1016/j.bioadv.2022.213127
               doi: 10.1002/adhm.202303312
                                                               33.  Gaharwar AK, Singh I, Khademhosseini A. Engineered
            21.  Di Buduo CA, Lunghi M, Kuzmenko V, et al. Bioprinting   biomaterials for in situ tissue regeneration. Nat Rev Mater.
               soft 3D models of hematopoiesis using natural silk fibroin-  2020;5(9):686-705.
               based bioink efficiently supports platelet differentiation. Adv      doi: 10.1038/s41578-020-0209-x
               Sci. 2024;11(18):2308276.                       34.  Levin AA, Karalkin PA, V. Koudan E, et al. Commercial
               doi: 10.1002/advs.202308276
                                                                  articulated collaborative in situ 3D bioprinter for skin
            22.  Edri S, Frisch AN, Safina D, et al. 3D bioprinting of   wound healing. Int J Bioprint. 2023;9(2):380-393.
               multicellular  stem  cell-derived  constructs  to  model      doi: 10.18063/ijb.v9i2.675
               pancreatic  cell  differentiation.  Adv Funct Mater.   35.  Li  L,  Shi  J,  Ma  K,  et  al.  Robotic  in  situ  3D  bio-printing
               2024;34:2315488.                                   technology for repairing large segmental bone defects. J Adv
               doi: 10.1002/adfm.202315488
                                                                  Res. 2021;30:75-84.
            23.  Li H, Cheng F, Orgill DP, Yao J, Zhang YS. Handheld      doi: 10.1016/j.jare.2020.11.011
               bioprinting strategies for in situ wound dressing. In: Jang J,   36.  Moncal KK, Gudapati H, Godzik KP, et al. Intra-operative
               ed. Essays in Biochemistry. Vol. 65. London: Portland Press;   bioprinting of hard, soft, and hard/soft composite tissues
               2021:533-543.                                      for craniomaxillofacial reconstruction.  Adv Funct Mater.
               doi: 10.1042/EBC20200098
                                                                  2021;31(29):2010858.
            24.  Thai MT, Phan PT, Tran HA, et al. Advanced soft robotic      doi: 10.1002/adfm.202010858
               system for in situ 3D bioprinting and endoscopic surgery.   37.  Albanna M, Binder KW, Murphy SV, et al. In situ
               Adv Sci. 2023;10(12):2205656.                      bioprinting of autologous skin cells accelerates wound
               doi: 10.1002/advs.202205656
                                                                  healing of extensive excisional full-thickness wounds.
            25.  Agostinacchio F, Mu X, Dire S, Motta A, Kaplan DL. In situ   Sci Rep. 2019;9(1):1856
               3D printing: opportunities with silk inks. Trends Biotechnol.      doi: 10.1038/s41598-018-38366-w
               2021;39(7):719-730.                             38.  Zhao W, Hu C, Xu T, et al. Subaqueous bioprinting:
               doi: 10.1016/j.tibtech.2020.11.003
                                                                  a novel strategy for fetal membrane repair with 7-axis
            26.  Akilbekova D, Mektepbayeva D. Chapter 5-patient specific   robot-assisted minimally invasive surgery. Adv Funct Mater.
               in situ  3D printing. In: Kalaskar DM, ed.  3D Printing in   2022;32(51):2207496.
               Medicine. Cambridge: Woodhead Publishing; 2017:91-113.     doi: 10.1002/adfm.202207496
               doi: 10.1016/b978-0-08-100717-4.00004-1
                                                               39.  Christensen K, Compaan A, Chai W, Xia G, Huang Y.
            27.  Campbell PG, Weiss LE. Tissue engineering with the aid of   In situ printing-then-mixing for biological structure
               inkjet printers. Expert Opin Biol Ther. 2007;7(8):1123-1127.  fabrication using intersecting jets.  ACS  Biomater  Sci  Eng.
               doi: 10.1517/14712598.7.8.1123                     2017;3(12):3687-3694.
                                                                  doi: 10.1021/acsbiomaterials.7b00752
            28.  Samandari M, Mostafavi A, Quint J, Memic A, Tamayol
               A. In situ bioprinting: intraoperative implementation of   40.  Keriquel V, Oliveira H, Remy M, et al. In situ printing of
               regenerative medicine.  Trends Biotechnol. 2022;40(10):   mesenchymal stromal cells, by laser-assisted bioprinting, for in
               1229-1247.                                         vivo bone regeneration applications. Sci Rep. 2017;7(1):1778.
               doi: 10.1016/j.tibtech.2022.03.009                 doi: 10.1038/s41598-017-01914-x
            29.  Zhao W, Xu T. Preliminary engineering for in situ in vivo   41.  Kerouredan O, Hakobyan D, Remy M, et al. In
               bioprinting: a novel micro bioprinting platform for in situ   situ  prevascularization  designed  by  laser-assisted
               in vivo bioprinting at a gastric wound site. Biofabrication.   bioprinting: effect on bone regeneration.  Biofabrication.
               2020;12(4):045020.                                 2019;11(4):045002.
               doi: 10.1088/1758-5090/aba4ff                      doi: 10.1088/1758-5090/ab2620
            Volume 10 Issue 5 (2024)                        63                                doi: 10.36922/ijb.3366
     	
