Page 75 - IJB-10-5
P. 75
International Journal of Bioprinting Medical regenerative in situ bioprinting
114. de Melo BAG, Jodat YA, Mehrotra S, et al. 3D printed cartilage- bioprinting of electronics at the tissue interface. Mater Today
like tissue constructs with spatially controlled mechanical Adv. 2023;17:100352.
properties. Adv Funct Mater. 2019;29(51):1906330. doi: 10.1016/j.mtadv.2023.100352
doi: 10.1002/adfm.201906330
123. Yin J, Zhao D, Liu J. Trends on physical understanding of
115. Li C, Wang J, Yang W, et al. 3D-printed hydrogel particles bioink printability. Bio-Des Manuf. 2019;2(1):50-54.
containing PRP laden with TDSCs promote tendon doi: 10.1007/s42242-019-00033-y
repair in a rat model of tendinopathy. J Nanobiotechnol.
2023;21(1):177. 124. Wang X, Yang C, Yu Y, Zhao Y. In situ 3D bioprinting living
doi: 10.1186/s12951-023-01892-5 photosynthetic scaffolds for autotrophic wound healing.
Research (Wash D C). 2022;2022:9794745.
116. Li J, Huang Y, Song J, et al. Cartilage regeneration using doi: 10.34133/2022/9794745
arthroscopic flushing fluid-derived mesenchymal stem cells
encapsulated in a one-step rapid cross-linked hydrogel. Acta 125. Hann SY, Cui H, Esworthy T, Zhang LG. 4D thermo-
Biomater. 2018;79:202-215. responsive smart hiPSC-CM cardiac construct for
doi: 10.1016/j.actbio.2018.08.029 myocardial cell therapy. Int J Nanomed. 2023;18:1809-1821.
doi: 10.2147/IJN.S402855
117. Blaeser A, Million N, Campos DFD, et al. Laser-based in situ
embedding of metal nanoparticles into bioextruded alginate 126. Joshi A, Choudhury S, Baghel VS, et al. 4D printed
hydrogel tubes enhances human endothelial cell adhesion. programmable shape-morphing hydrogels as intraoperative
Nano Res. 2016;9(11):3407-3427. self-folding nerve conduits for sutureless neurorrhaphy. Adv
doi: 10.1007/s12274-016-1218-3 Healthcare Mater. 2023;12(24):e2300701.
doi: 10.1002/adhm.202300701
118. Khoshnood N, Shahrezaee MH, Shahrezaee M, Zamanian
A. Three-dimensional bioprinting of tragacanth/ 127. Liu B, Li H, Meng F, et al. 4D printed hydrogel scaffold
hydroxyapaptite modified alginate bioinks for bone tissue with swelling-stiffening properties and programmable
engineering with tunable printability and bioactivity. J Appl deformation for minimally invasive implantation. Nat
Polym Sci. 2022;139(36):e52833. Commun. 2024;15(1):1587.
doi: 10.1002/app.52833 doi: 10.1038/s41467-024-45938-0
119. Bandyopadhyay A, Mandal BB, Bhardwaj N. 3D bioprinting 128. Luo K, Wang L, Wang M-X, et al. 4D printing of
of photo-crosslinkable silk methacrylate (SilMA)-polyethylene biocompatible scaffolds via in situ photo-crosslinking from
glycol diacrylate (PEGDA) bioink for cartilage tissue shape memory copolyesters. ACS Appl Mater Interfaces.
engineering. J Biomed Mater Res Part A. 2022;110(4):884-898. 2023;15(37):44373-44383.
doi: 10.1002/jbm.a.37336 doi: 10.1021/acsami.3c10747
120. Zhang M, Qian T, Deng Z, Hang F. 3D printed double- 129. Li W, Wang M, Mille LS, et al. A smartphone-enabled
network alginate hydrogels containing polyphosphate for portable digital light processing 3D printer. Adv Mater.
bioenergetics and bone regeneration. Int J Biol Macromol. 2021;33(35):2102153.
2021;188:639-648. doi: 10.1002/adma.202102153
doi: 10.1016/j.ijbiomac.2021.08.066 130. Warth N, Berg M, Schumacher L, et al. Bioprint FirstAid:
121. Koo Y, Kim G. New strategy for enhancing in situ cell a handheld bioprinter for first aid utilization on space
viability of cell-printing process via piezoelectric transducer- exploration missions. Acta Astronaut. 2024;215:194-204.
assisted three-dimensional printing. Biofabrication. doi: 10.1016/j.actaastro.2023.11.033
2016;8(2):025010. 131. Tomooka Y, Spothelfer D, Puiggali-Jou A, et al. Minimally
doi: 10.1088/1758-5090/8/2/025010
invasive in situ bioprinting using tube-based material
122. Krishnadoss V, Kanjilal B, Masoumi A, et al. Programmable transfer. at - Automatisierungstechnik. 2023;71(7):562-571.
bio-ionic liquid functionalized hydrogels for in situ 3D doi: 10.1515/auto-2023-0060
Volume 10 Issue 5 (2024) 67 doi: 10.36922/ijb.3366

