Page 75 - IJB-10-5
        P. 75
     International Journal of Bioprinting                                  Medical regenerative in situ bioprinting
            114. de Melo BAG, Jodat YA, Mehrotra S, et al. 3D printed cartilage-  bioprinting of electronics at the tissue interface. Mater Today
               like tissue constructs with spatially controlled mechanical   Adv. 2023;17:100352.
               properties. Adv Funct Mater. 2019;29(51):1906330.     doi: 10.1016/j.mtadv.2023.100352
               doi: 10.1002/adfm.201906330
                                                               123. Yin J, Zhao D, Liu J. Trends on physical understanding of
            115. Li C, Wang J, Yang W, et al. 3D-printed hydrogel particles   bioink printability. Bio-Des Manuf. 2019;2(1):50-54.
               containing PRP laden with TDSCs promote tendon      doi: 10.1007/s42242-019-00033-y
               repair in a rat model of tendinopathy.  J Nanobiotechnol.
               2023;21(1):177.                                 124. Wang X, Yang C, Yu Y, Zhao Y. In situ 3D bioprinting living
               doi: 10.1186/s12951-023-01892-5                    photosynthetic scaffolds for autotrophic wound healing.
                                                                  Research (Wash D C). 2022;2022:9794745.
            116. Li J, Huang Y, Song J, et al. Cartilage regeneration using      doi: 10.34133/2022/9794745
               arthroscopic flushing fluid-derived mesenchymal stem cells
               encapsulated in a one-step rapid cross-linked hydrogel. Acta   125. Hann SY,  Cui  H, Esworthy  T, Zhang  LG. 4D  thermo-
               Biomater. 2018;79:202-215.                         responsive smart hiPSC-CM cardiac construct for
               doi: 10.1016/j.actbio.2018.08.029                  myocardial cell therapy. Int J Nanomed. 2023;18:1809-1821.
                                                                  doi: 10.2147/IJN.S402855
            117. Blaeser A, Million N, Campos DFD, et al. Laser-based in situ
               embedding of metal nanoparticles into bioextruded alginate   126. Joshi A, Choudhury S, Baghel VS, et al. 4D printed
               hydrogel tubes enhances human endothelial cell adhesion.   programmable shape-morphing hydrogels as intraoperative
               Nano Res. 2016;9(11):3407-3427.                    self-folding nerve conduits for sutureless neurorrhaphy. Adv
               doi: 10.1007/s12274-016-1218-3                     Healthcare Mater. 2023;12(24):e2300701.
                                                                  doi: 10.1002/adhm.202300701
            118. Khoshnood N, Shahrezaee MH, Shahrezaee M, Zamanian
               A.  Three-dimensional  bioprinting  of  tragacanth/  127. Liu B, Li H, Meng F, et al. 4D printed hydrogel scaffold
               hydroxyapaptite modified alginate bioinks for bone tissue   with swelling-stiffening properties and programmable
               engineering with tunable printability and bioactivity. J Appl   deformation for minimally invasive implantation.  Nat
               Polym Sci. 2022;139(36):e52833.                    Commun. 2024;15(1):1587.
               doi: 10.1002/app.52833                             doi: 10.1038/s41467-024-45938-0
            119.  Bandyopadhyay A, Mandal BB, Bhardwaj N. 3D bioprinting   128. Luo K, Wang L, Wang M-X, et al. 4D printing of
               of photo-crosslinkable silk methacrylate (SilMA)-polyethylene   biocompatible scaffolds via in situ photo-crosslinking from
               glycol diacrylate (PEGDA) bioink for cartilage tissue   shape memory copolyesters.  ACS Appl Mater Interfaces.
               engineering. J Biomed Mater Res Part A. 2022;110(4):884-898.  2023;15(37):44373-44383.
               doi: 10.1002/jbm.a.37336                           doi: 10.1021/acsami.3c10747
            120. Zhang M, Qian T, Deng Z, Hang F. 3D printed double-  129. Li W, Wang M, Mille LS, et al. A smartphone-enabled
               network alginate hydrogels containing polyphosphate for   portable digital light processing 3D printer.  Adv  Mater.
               bioenergetics and bone regeneration. Int J Biol Macromol.   2021;33(35):2102153.
               2021;188:639-648.                                  doi: 10.1002/adma.202102153
               doi: 10.1016/j.ijbiomac.2021.08.066             130. Warth N, Berg M, Schumacher L, et al. Bioprint FirstAid:
            121. Koo Y, Kim G. New strategy for enhancing in situ cell   a  handheld  bioprinter  for  first  aid  utilization on  space
               viability of cell-printing process via piezoelectric transducer-  exploration missions. Acta Astronaut. 2024;215:194-204.
               assisted  three-dimensional  printing.  Biofabrication.      doi: 10.1016/j.actaastro.2023.11.033
               2016;8(2):025010.                               131. Tomooka Y, Spothelfer D, Puiggali-Jou A, et al. Minimally
               doi: 10.1088/1758-5090/8/2/025010
                                                                  invasive in situ bioprinting using tube-based material
            122. Krishnadoss V, Kanjilal B, Masoumi A, et al. Programmable   transfer. at - Automatisierungstechnik. 2023;71(7):562-571.
               bio-ionic  liquid  functionalized  hydrogels  for  in  situ  3D      doi: 10.1515/auto-2023-0060
            Volume 10 Issue 5 (2024)                        67                                doi: 10.36922/ijb.3366
     	
