Page 106 - IJB-6-1
P. 106

Graphene oxide accelerates degradation of poly-l-lactic acid scaffold
           In addition, the scaffold also demonstrated good        (PBAT),  Poly  (Lactic  Acid)(PLA), and  their  Blend  under
           bioactivity and cytocompatibility.  This study          Soil  Conditions.  Polym  Test,  32:918–926.  DOI:  10.1016/j.
           suggested that PLLA/GO scaffolds may be                 polymertesting.2013.05.001.
           promising for bone tissue engineering.              7.   Shuai C, Li Y, Feng P, et al., 2019, Montmorillonite Reduces
                                                                   Crystallinity  of Poly-l-lactic  Acid Scaffolds to  Accelerate
           Acknowledgments                                         Degradation.  Polym Adv  Technol, 30:2425–2435. DOI:

           This work was supported by the following funds:         10.1002/pat.4690.
           (1)  The Natural Science Foundation of China        8.   Tanaka  M,  Tanaka  H,  Hojo  M,  et al.,  2019,  Change  in
           (51935014,  51905553,  81871494,  81871498,             Deformation/Fracture  Behavior of Interface-controlled
           51705540); (2) Hunan Provincial Natural Science         HAP/PLLA Composites by Hydrolysis, Proceedings of the
                                                                    th
           Foundation of China (2019JJ50774, 2018JJ3671,           17  International Conference on Composite Materials, CD-
           2019JJ50588);  (3)  JiangXi  Provincial  Natural        ROM.
           Science Foundation of China (20192ACB20005);        9.   Yang Y,  He  C,  Dianyu  E,  et al.,  2019,  Mg  Bone  Implant:
                                                                   Features, Developments and Perspectives.  Mater Des,
           (4) Guangdong Province Higher  Vocational               2019:108259.
           Colleges & Schools Pearl River Scholar Funded       10.  Lee  JH,  Park  TG,  Park  HS, et al., 2003,  Thermal  and
           Scheme (2018); (5) The Open-End Fund for the            Mechanical  Characteristics  of  Poly(L-lactic  acid)
           Valuable and Precision Instruments of Central South     Nanocomposite Scaffold. Biomaterials, 24:2773–2778. DOI:
           University; (6) National Postdoctoral Program for
           Innovative Talents (BX201700291); (7) The China         10.1016/s0142-9612(03)00080-2.
           Postdoctoral Science Foundation (2018M632983);      11.  Chen  X,  Wu  X, Fan  Z,  et  al.,  2018,  Biodegradable  Poly
           (8) The Project of Hunan Provincial Science and         (Trimethylene   carbonate-b-(L-lactide-ran-glycolide)
           Technology Plan (2017RS3008); (9) The Project           Terpolymers with  Tailored  Molecular  Structure and
           of State Key Laboratory of High-Performance             Advanced Performance. Polym Adv Technol, 29:1684–1696.
                                                                   DOI: 10.1002/pat.4272.
           Complex Manufacturing, Central South University;    12.  Shuai C, Yang Y, Feng P, et al., 2018, A Multi-scale Porous
           and (10) The Fundamental Research Funds for the         Scaffold Fabricated by a Combined Additive Manufacturing
           Central Universities of Central South University        and Chemical Etching Process for Bone Tissue Engineering.
           (2019zzts141, CX20190197).
                                                                   Int J Bioprint, 4:133. DOI: 10.18063/ijb.v4i1.133.
           References                                          13.  Shie MY, Fang HY, Lin  YH, et al.,  2019, Application  of
                                                                   Piezoelectric  Cells Printing on  Three-dimensional  Porous
           1.   An J, Teoh JE, Suntornnond R, et al., 2015, Design and 3D   Bioceramic Scaffold for Bone Regeneration. Int J Bioprint,
               Printing of Scaffolds and Tissues. Engineering, 1:261–268.  5:210. DOI: 10.18063/ijb.v5i2.210.
           2.   Liu F, Mishbak H, Bartolo PJ, 2019, Hybrid Polycaprolactone/  14.  Yang Y, Wang G, Liang H, et al., 2019, Additive manufacturing
               Hydrogel  Scaffold  Fabrication  and  in-process  Plasma   of bone scaffolds. Int J Bioprint, 5:184.
               Treatment Using PABS. Int J Bioprint, 5:174.    15.  Ji  JH,  Park  IS,  Kim  YK,  et  al.,  2015,  Influence  of  Heat
           3.   Cardoso, GB, Perea, GN, D’Avila, MA, et al., 2011, Initial   Treatment  on  Biocorrosion  and  Hemocompatibility  of
               Study of Electrospinning  PCL/PLLA Blends.  Adv Mater   Biodegradable  Mg-35Zn-3Ca  Alloy.  Adv  Mater Sci  Eng,
               Phys Chem, 1:94–98.                                 17:1–10. DOI: 10.1155/2015/318696.
           4.   Saito Y, Minami K, Kobayashi M, et al., 2002, New Tubular   16.  Kang Y, Chen P, Shi X, et al., 2018, Multilevel Structural
               Bioabsorbable Knitted Airway Stent: Biocompatibility  and   Stereocomplex  Polylactic  Acid/collagen Membranes by
               Mechanical Strength. J Thorac Cardiovasc Surg, 123:161–  Pattern  Electrospinning  for  Tissue  Engineering.  Polymer,
               167. DOI: 10.1067/mtc.2002.118503.                  156:250–260. DOI: 10.1016/j.polymer.2018.10.009.
           5.   Shuai  C, Yang W, He C, et  al., 2020, A Magnetic  Micro-  17.  Buwalda SJ, Dijkstra PJ, Calucci L, et al., 2019, Influence
               environment in Scaffolds for Stimulating Bone Regeneration.   of Amide versus Ester Linkages on the Properties of Eight-
               Mater Des, 185:108275. DOI: 10.1016/j.matdes.2019.108275.  Armed  PEG-PLA  Star  Block  Copolymer  Hydrogels.
           6.   Weng  Y, Jin  Y, Meng Q, et  al., 2013, Biodegradation   Biomacromolecules, 11:224–232. DOI: 10.1021/bm901080d.
               Behavior of Poly (Butylene  Adipate-co-terephthalate)  18.  Kontakis  GM,  Pagkalos  JE,  Tosounidis  TI, et  al., 2007,

           102                         International Journal of Bioprinting (2020)–Volume 6, Issue 1
   101   102   103   104   105   106   107   108   109   110   111