Page 108 - IJB-6-1
P. 108

Graphene oxide accelerates degradation of poly-l-lactic acid scaffold
           42.  Zhuang P, Ng  WL,  An  J, et al.,  2019,  Layer-by-Layer   Biomedical Applications. Biomater Sci, 7:3876–3885. DOI:
               Ultraviolet Assisted Extrusion-based (UAE) Bioprinting  of   10.1039/c9bm00867e.
               Hydrogel Constructs with High Aspect Ratio for Soft Tissue   52.  Zhang P, Wang BT, Gao D, et al., The Study on the Mechanical
               Engineering  Applications.  PLoS One, 14:e0216776.  DOI:   Properties  of Poly (Lactic  Acid)/Straw  Fiber  Composites.
               10.1371/journal.pone.0216776.                       Appl Mech Mater, 2012:312–315.
           43.  Lins LC,  Wianny F, Livi  S, et al., Development  of   53.  Todo  M,  Park  SD, Arakawa  K, et  al., 2006, Relationship
               Bioresorbable  Hydrophilic-hydrophobic  Electrospun  between  Microstructure  and  Fracture  Behavior  of
               Scaffolds for Neural Tissue Engineering. Biomacromolecules,   Bioabsorbable  HA/PLLA Composites.  Compos  Part  A
               17:3172–3187. DOI: 10.1021/acs.biomac.6b00820.      Appl  Sci  Manuf,   37:2221–2225.   DOI:   10.1016/j.
           44.  Gao C,  Yao  M, Li  S, et  al.,  2019,  Highly  Biodegradable   compositesa.2005.10.001.
               and Bioactive  Fe-Pd-Bredigite  Biocomposites  Prepared   54.  Yang Y, He C, Dianyu E, et al.,  2019,  Mg  Bone  Implant:
               by Selective  Laser Melting.  J  Adv Res,  20:91–104.  DOI:   Features, Developments and Perspectives.  Mater Des,
               10.1016/j.jare.2019.06.001.                         185:108259. DOI: 10.1016/j.matdes.2019.108259.
           45.  Wei G, Ma PX, 2004, Structure  and  Properties  of Nano-  55.  Shuai C, Liu G, Yang Y, et al., 2020, Functionalized BaTiO
                                                                                                              3
               Hydroxyapatite/Polymer  Composite Scaffolds for Bone   Enhances  Piezoelectric  Effect  towards Cell  Response  of
               Tissue Engineering.  Biomaterials,  25:4749–4757.  DOI:   Bone Scaffold.  Colloids Surf B Biointerfaces,  185:110587.
               10.1016/j.biomaterials.2003.12.005.                 DOI: 10.1016/j.colsurfb.2019.110587.
           46.  Xia W, Chang J, 2010, Bioactive Glass Scaffold with Similar   56.  Zhou Z, Liu L, Liu Q, et al., 2012, Effect  of Surface
               Structure and Mechanical  Properties of Cancellous Bone.   Modification  of  Bioactive  Glass  on  Properties  of  Poly-
               J  Biomed  Mater  Res Part  B  Appl  Biomater,  95:449–455.   L-Lactide  Composite  Materials.  J  Macromol Sci  Part  B,
               DOI: 10.1002/jbm.b.31736.                           51:1637–1646. DOI: 10.1080/00222348.2012.672295.
           47.  Feng P, Kong Y, Yu L, et al., 2019, Molybdenum Disulfide   57.  Alexa  A, Rahnenführer J, Lengauer  TR, 2006, Improved
               Nanosheets Embedded  with Nanodiamond Particles:  Co-  Scoring of Functional Groups from Gene Expression Data by
               dispersion  Nanostructures  as  Reinforcements  for Polymer   Decorrelating GO Graph Structure. Bioinformatics, 22:1600–
               Scaffolds. Appl Mater Today, 17:216–226. DOI: 10.1016/j.  1607. DOI: 10.1093/bioinformatics/btl140.
               apmt.2019.08.005.                               58.  Shuai  C,  Cheng Y, Yang Y, et al.,  2019,  Laser  Additive
           48.  Geng LH, Peng XF, Jing X, et al., Investigation of Poly(l-  Manufacturing of Zn-2Al Part for Bone Repair: Formability,
               lactic  acid)/Graphene  Oxide  Composites  Crystallization   Microstructure  and Properties.  J  Alloys  Compd,  798:606–
               and Nanopore Foaming Behaviors via Supercritical Carbon   615. DOI: 10.1016/j.jallcom.2019.05.278.
               Dioxide Low Temperature Foaming. J Mater Res, 31:348–  59.  Yang X, Li X, Ma X, et al., 2014, Carbonaceous Impurities
               359. DOI: 10.1557/jmr.2016.13.                      Contained  in  Graphene  Oxide/Reduced  Graphene
           49.  Morales-Narváez  E,  Baptista-Pires  L,  Zamora-Gálvez  A,   Oxide Dominate their Electrochemical  Capacitances.
               et al., 2017, Graphene-Based Biosensors: Going Simple. Adv   Electroanalysis, 26:139–146. DOI: 10.1002/elan.201300128.
               Mater, 29:1604905. DOI: 10.1002/adma.201604905.  60.  Wang H,  Zhao S,  Xiao  W, et al.,  2016,  Influence  of  Cu
           50.  Kaniyoor  A, Baby  TT, Ramaprabhu S, 2010,  Graphene   Doping in Borosilicate Bioactive Glass and the Properties of
               Synthesis  via  Hydrogen  Induced  Low  Temperature   its Derived Scaffolds. Mater Sci Eng C, 58:194–203. DOI:
               Exfoliation of Graphite Oxide. J Mater Chem, 20:8467–8460.   10.1016/j.msec.2015.08.027.
               DOI: 10.1039/c0jm01876g.                        61.  Suntornnond R,  An J, Chua CK, 2017, Roles of Support
           51.  Eckhart KE, Holt BD, Laurencin MG, et al., 2019, Covalent   Materials  in  3D Bioprinting-Present  and  Future.  Int J
               Conjugation  of  Bioactive  Peptides  to  Graphene Oxide for   Bioprint, 3:321–328. DOI: 10.18063/ijb.2017.01.006.













           104                         International Journal of Bioprinting (2020)–Volume 6, Issue 1
   103   104   105   106   107   108   109   110   111   112   113