Page 108 - IJB-6-1
P. 108
Graphene oxide accelerates degradation of poly-l-lactic acid scaffold
42. Zhuang P, Ng WL, An J, et al., 2019, Layer-by-Layer Biomedical Applications. Biomater Sci, 7:3876–3885. DOI:
Ultraviolet Assisted Extrusion-based (UAE) Bioprinting of 10.1039/c9bm00867e.
Hydrogel Constructs with High Aspect Ratio for Soft Tissue 52. Zhang P, Wang BT, Gao D, et al., The Study on the Mechanical
Engineering Applications. PLoS One, 14:e0216776. DOI: Properties of Poly (Lactic Acid)/Straw Fiber Composites.
10.1371/journal.pone.0216776. Appl Mech Mater, 2012:312–315.
43. Lins LC, Wianny F, Livi S, et al., Development of 53. Todo M, Park SD, Arakawa K, et al., 2006, Relationship
Bioresorbable Hydrophilic-hydrophobic Electrospun between Microstructure and Fracture Behavior of
Scaffolds for Neural Tissue Engineering. Biomacromolecules, Bioabsorbable HA/PLLA Composites. Compos Part A
17:3172–3187. DOI: 10.1021/acs.biomac.6b00820. Appl Sci Manuf, 37:2221–2225. DOI: 10.1016/j.
44. Gao C, Yao M, Li S, et al., 2019, Highly Biodegradable compositesa.2005.10.001.
and Bioactive Fe-Pd-Bredigite Biocomposites Prepared 54. Yang Y, He C, Dianyu E, et al., 2019, Mg Bone Implant:
by Selective Laser Melting. J Adv Res, 20:91–104. DOI: Features, Developments and Perspectives. Mater Des,
10.1016/j.jare.2019.06.001. 185:108259. DOI: 10.1016/j.matdes.2019.108259.
45. Wei G, Ma PX, 2004, Structure and Properties of Nano- 55. Shuai C, Liu G, Yang Y, et al., 2020, Functionalized BaTiO
3
Hydroxyapatite/Polymer Composite Scaffolds for Bone Enhances Piezoelectric Effect towards Cell Response of
Tissue Engineering. Biomaterials, 25:4749–4757. DOI: Bone Scaffold. Colloids Surf B Biointerfaces, 185:110587.
10.1016/j.biomaterials.2003.12.005. DOI: 10.1016/j.colsurfb.2019.110587.
46. Xia W, Chang J, 2010, Bioactive Glass Scaffold with Similar 56. Zhou Z, Liu L, Liu Q, et al., 2012, Effect of Surface
Structure and Mechanical Properties of Cancellous Bone. Modification of Bioactive Glass on Properties of Poly-
J Biomed Mater Res Part B Appl Biomater, 95:449–455. L-Lactide Composite Materials. J Macromol Sci Part B,
DOI: 10.1002/jbm.b.31736. 51:1637–1646. DOI: 10.1080/00222348.2012.672295.
47. Feng P, Kong Y, Yu L, et al., 2019, Molybdenum Disulfide 57. Alexa A, Rahnenführer J, Lengauer TR, 2006, Improved
Nanosheets Embedded with Nanodiamond Particles: Co- Scoring of Functional Groups from Gene Expression Data by
dispersion Nanostructures as Reinforcements for Polymer Decorrelating GO Graph Structure. Bioinformatics, 22:1600–
Scaffolds. Appl Mater Today, 17:216–226. DOI: 10.1016/j. 1607. DOI: 10.1093/bioinformatics/btl140.
apmt.2019.08.005. 58. Shuai C, Cheng Y, Yang Y, et al., 2019, Laser Additive
48. Geng LH, Peng XF, Jing X, et al., Investigation of Poly(l- Manufacturing of Zn-2Al Part for Bone Repair: Formability,
lactic acid)/Graphene Oxide Composites Crystallization Microstructure and Properties. J Alloys Compd, 798:606–
and Nanopore Foaming Behaviors via Supercritical Carbon 615. DOI: 10.1016/j.jallcom.2019.05.278.
Dioxide Low Temperature Foaming. J Mater Res, 31:348– 59. Yang X, Li X, Ma X, et al., 2014, Carbonaceous Impurities
359. DOI: 10.1557/jmr.2016.13. Contained in Graphene Oxide/Reduced Graphene
49. Morales-Narváez E, Baptista-Pires L, Zamora-Gálvez A, Oxide Dominate their Electrochemical Capacitances.
et al., 2017, Graphene-Based Biosensors: Going Simple. Adv Electroanalysis, 26:139–146. DOI: 10.1002/elan.201300128.
Mater, 29:1604905. DOI: 10.1002/adma.201604905. 60. Wang H, Zhao S, Xiao W, et al., 2016, Influence of Cu
50. Kaniyoor A, Baby TT, Ramaprabhu S, 2010, Graphene Doping in Borosilicate Bioactive Glass and the Properties of
Synthesis via Hydrogen Induced Low Temperature its Derived Scaffolds. Mater Sci Eng C, 58:194–203. DOI:
Exfoliation of Graphite Oxide. J Mater Chem, 20:8467–8460. 10.1016/j.msec.2015.08.027.
DOI: 10.1039/c0jm01876g. 61. Suntornnond R, An J, Chua CK, 2017, Roles of Support
51. Eckhart KE, Holt BD, Laurencin MG, et al., 2019, Covalent Materials in 3D Bioprinting-Present and Future. Int J
Conjugation of Bioactive Peptides to Graphene Oxide for Bioprint, 3:321–328. DOI: 10.18063/ijb.2017.01.006.
104 International Journal of Bioprinting (2020)–Volume 6, Issue 1

