Page 107 - IJB-6-1
P. 107

Shuai, et al.
               Bioabsorbable Materials in Orthopaedics. Acta Orthop Belg,   Mechanical  Properties and Biodegradability.  J  Mater Sci
               73:159–169.                                         Technol, 35:2608–2617. DOI: 10.1016/j.jmst.2019.06.010.
           19.  Shuai C, Zan J, Yang Y, et al., 2019, Surface Modification   31.  Rodríguez-Lozano FJ, García-Bernal D, Aznar-Cervantes S,
               Enhances  Interfacial  Bonding in PLLA/MgO Bone     et al., 2014, Effects of Composite Films of Silk Fibroin and
               Scaffold.  Mater  Sci  Eng  C,  108:110486.  DOI:  10.1016/j.  Graphene Oxide on the Proliferation,  Cell  Viability  and
               msec.2019.110486.                                   Mesenchymal  Phenotype  of Periodontal  Ligament  Stem
           20.  Ding  L, Wei Y, Wang Y, et al.,  2017, A Two-Dimensional   Cells. J Mater Sci Mater Med, 25:2731–2741. DOI: 10.1007/
               Lamellar Membrane: MXene Nanosheet Stacks. Angew Chem   s10856-014-5293-2.
               Int Ed Engl, 56:1825–1829. DOI: 10.1002/anie.201609306.  32.  Li W, Xu Z, Chen L, et al., 2014, A Facile Method to Produce
           21.  Shen J, Hu Y, Shi M, et al., 2009, Fast and Facile Preparation   Graphene Oxide-g-poly (L-lactic  acid)  as an Promising
               of  Graphene Oxide and Reduced  Graphene Oxide      Reinforcement  for PLLA Nanocomposites.  Chem Eng J,
               Nanoplatelets.  Chem Mater, 21:3514–3520. DOI: 10.1021/  237:291–299. DOI: 10.1016/j.cej.2013.10.034.
               cm901247t.                                      33.  Zhang K, Zheng  H, Liang  S, et  al., 2016, Aligned  PLLA
           22.  Wang G, Qi F,  Yang  W,  et al.,  2019,  Crystallinity  and   Nanofibrous  Scaffolds  Coated  with  Graphene  Oxide  for
               Reinforcement  in Poly-l-lactic  Acid Scaffold Induced by   Promoting Neural Cell Growth. Acta Biomater, 37:131–142.
               Carbon Nanotubes. Adv Polym Technol, 2019:8625325.  DOI: 10.1016/j.actbio.2016.04.008.
           23.  Yoon OJ, Sohn IY, Kim DJ, et al., Enhancement  of   34.  Pan LH, Kuo SH, Lin TY, et al., 2017, An Electrochemical
               Thermomechanical Properties of poly(D,L-lactic-co-glycolic   Biosensor to Simultaneously  Detect  VEGF and PSA for
               acid)  and  Graphene  Oxide Composite  Films for Scaffolds.   Early Prostate Cancer Diagnosis Based on Graphene Oxide/
               Macromol Res,  20:789–794.  DOI:  10.1007/s13233-012-  ssDNA/PLLA Nanoparticles.  Biosens Bioelectron,  89:598–
               0116-0.                                             605. DOI: 10.1016/j.bios.2016.01.077.
           24.  He S, Yang S, Zhang Y, Li X, et al., 2019, LncRNA ODIR1   35.  Chen Q, Mangadlao JD, Wallat J, et al., 2017, 3D Printing
               Inhibits Osteogenic Differentiation of hUC-MSCs  through   Biocompatible  Polyurethane/Poly  (Lactic  Acid)/Graphene
               the FBXO25/H2BK120ub/H3K4me3/OSX Axis. Cell Death   Oxide Nanocomposites:  Anisotropic Properties.  ACS
               Dis, 10:1–16. DOI: 10.1038/s41419-019-2148-2.       Appl  Mater Interfaces,  9:4015–4023.  DOI:  10.1021/
           25.  Depan D, Girase B, Shah JS, et al., 2011, Structure-Process-  acsami.6b11793.
               Property Relationship of the Polar Graphene Oxide-mediated   36.  Yuan S, Shen F, Chua CK, et al., 2019, Polymeric Composites
               Cellular  Response and Stimulated Growth of Osteoblasts   for Powder-based  Additive Manufacturing:  Materials  and
               on  Hybrid  Chitosan  Network  Structure  Nanocomposite   Applications. Prog Polym Sci, 91:141–168. DOI: 10.1016/j.
               Scaffolds.  Acta  Biomater,  7:3432–3445.  DOI:  10.1016/j.  progpolymsci.2018.11.001.
               actbio.2011.05.019.                             37.  Lee JY, An J, Chua CK, 2017, Fundamentals and Applications
           26.  Xiong G, Luo H, Zuo G, et al., Novel Porous Graphene Oxide   of 3D Printing for Novel Materials.  Appl Mater Today,
               and Hydroxyapatite Nanosheets-reinforced Sodium Alginate   7:120–133.
               Hybrid Nanocomposites for Medical  Applications.  Mater   38.  Zhuang P, Sun AX, An  J, et al., 2018, 3D  Neural  Tissue
               Charact, 107:419–425. DOI: 10.1016/j.matchar.2015.07.016.  Models: From Spheroids to Bioprinting.  Biomaterials,
           27.  Chen J, Shi X, Ren L, et  al., 2016,  Graphene Oxide/PVA   154:113–133. DOI: 10.1016/j.biomaterials.2017.10.002.
               Inorganic/Organic Interpenetrating Hydrogels with Excellent   39.  Mir TA, Iwanaga S, Kurooka T, et al., 2019, Biofabrication
               Mechanical  Properties and Biocompatibility.  Carbon,   Offers  Future  Hope  for  Tackling  Various  Obstacles  and
               111:18–27. DOI: 10.1016/j.carbon.2016.07.038.       Challenges in Tissue Engineering and Regenerative Medicine:
           28.  Zhao X, Zhang Q, Chen D, et al., 2010, Enhanced Mechanical   A  Perspective.  Int  J Bioprint,  5:153.  DOI:  10.18063/ijb.
               Properties  of  Graphene-Based  Poly(vinyl  alcohol)  v5i1.153.
               Composites. Macromolecules, 44:2392–2392. DOI: 10.1021/  40.  Ng WL, Chua CK, Shen YF, 2019, Print me an Organ! Why
               ma200335d.                                          we are not  there  yet.  Prog Polym  Sci,  97:101145.  DOI:
           29.  Wang K, Ruan J, Song H, et al., 2011, Biocompatibility of   10.1016/j.progpolymsci.2019.101145.
               Graphene Oxide. Nanoscale Res Lett, 6:1–8.      41.  Lee JM, Sing SL, Zhou M, et al., 2018, 3D Bioprinting
           30.  Gao C, Yao M, Shuai C, et al., 2019, Nano-SiC Reinforced Zn   Processes: A Perspective on Classification and Terminology.
               Biocomposites Prepared via Laser Melting: Microstructure,   Int J Bioprint, 4:151. DOI: 10.18063/ijb.v4i2.151.

                                       International Journal of Bioprinting (2020)–Volume 6, Issue 1       103
   102   103   104   105   106   107   108   109   110   111   112