Page 107 - IJB-6-1
P. 107
Shuai, et al.
Bioabsorbable Materials in Orthopaedics. Acta Orthop Belg, Mechanical Properties and Biodegradability. J Mater Sci
73:159–169. Technol, 35:2608–2617. DOI: 10.1016/j.jmst.2019.06.010.
19. Shuai C, Zan J, Yang Y, et al., 2019, Surface Modification 31. Rodríguez-Lozano FJ, García-Bernal D, Aznar-Cervantes S,
Enhances Interfacial Bonding in PLLA/MgO Bone et al., 2014, Effects of Composite Films of Silk Fibroin and
Scaffold. Mater Sci Eng C, 108:110486. DOI: 10.1016/j. Graphene Oxide on the Proliferation, Cell Viability and
msec.2019.110486. Mesenchymal Phenotype of Periodontal Ligament Stem
20. Ding L, Wei Y, Wang Y, et al., 2017, A Two-Dimensional Cells. J Mater Sci Mater Med, 25:2731–2741. DOI: 10.1007/
Lamellar Membrane: MXene Nanosheet Stacks. Angew Chem s10856-014-5293-2.
Int Ed Engl, 56:1825–1829. DOI: 10.1002/anie.201609306. 32. Li W, Xu Z, Chen L, et al., 2014, A Facile Method to Produce
21. Shen J, Hu Y, Shi M, et al., 2009, Fast and Facile Preparation Graphene Oxide-g-poly (L-lactic acid) as an Promising
of Graphene Oxide and Reduced Graphene Oxide Reinforcement for PLLA Nanocomposites. Chem Eng J,
Nanoplatelets. Chem Mater, 21:3514–3520. DOI: 10.1021/ 237:291–299. DOI: 10.1016/j.cej.2013.10.034.
cm901247t. 33. Zhang K, Zheng H, Liang S, et al., 2016, Aligned PLLA
22. Wang G, Qi F, Yang W, et al., 2019, Crystallinity and Nanofibrous Scaffolds Coated with Graphene Oxide for
Reinforcement in Poly-l-lactic Acid Scaffold Induced by Promoting Neural Cell Growth. Acta Biomater, 37:131–142.
Carbon Nanotubes. Adv Polym Technol, 2019:8625325. DOI: 10.1016/j.actbio.2016.04.008.
23. Yoon OJ, Sohn IY, Kim DJ, et al., Enhancement of 34. Pan LH, Kuo SH, Lin TY, et al., 2017, An Electrochemical
Thermomechanical Properties of poly(D,L-lactic-co-glycolic Biosensor to Simultaneously Detect VEGF and PSA for
acid) and Graphene Oxide Composite Films for Scaffolds. Early Prostate Cancer Diagnosis Based on Graphene Oxide/
Macromol Res, 20:789–794. DOI: 10.1007/s13233-012- ssDNA/PLLA Nanoparticles. Biosens Bioelectron, 89:598–
0116-0. 605. DOI: 10.1016/j.bios.2016.01.077.
24. He S, Yang S, Zhang Y, Li X, et al., 2019, LncRNA ODIR1 35. Chen Q, Mangadlao JD, Wallat J, et al., 2017, 3D Printing
Inhibits Osteogenic Differentiation of hUC-MSCs through Biocompatible Polyurethane/Poly (Lactic Acid)/Graphene
the FBXO25/H2BK120ub/H3K4me3/OSX Axis. Cell Death Oxide Nanocomposites: Anisotropic Properties. ACS
Dis, 10:1–16. DOI: 10.1038/s41419-019-2148-2. Appl Mater Interfaces, 9:4015–4023. DOI: 10.1021/
25. Depan D, Girase B, Shah JS, et al., 2011, Structure-Process- acsami.6b11793.
Property Relationship of the Polar Graphene Oxide-mediated 36. Yuan S, Shen F, Chua CK, et al., 2019, Polymeric Composites
Cellular Response and Stimulated Growth of Osteoblasts for Powder-based Additive Manufacturing: Materials and
on Hybrid Chitosan Network Structure Nanocomposite Applications. Prog Polym Sci, 91:141–168. DOI: 10.1016/j.
Scaffolds. Acta Biomater, 7:3432–3445. DOI: 10.1016/j. progpolymsci.2018.11.001.
actbio.2011.05.019. 37. Lee JY, An J, Chua CK, 2017, Fundamentals and Applications
26. Xiong G, Luo H, Zuo G, et al., Novel Porous Graphene Oxide of 3D Printing for Novel Materials. Appl Mater Today,
and Hydroxyapatite Nanosheets-reinforced Sodium Alginate 7:120–133.
Hybrid Nanocomposites for Medical Applications. Mater 38. Zhuang P, Sun AX, An J, et al., 2018, 3D Neural Tissue
Charact, 107:419–425. DOI: 10.1016/j.matchar.2015.07.016. Models: From Spheroids to Bioprinting. Biomaterials,
27. Chen J, Shi X, Ren L, et al., 2016, Graphene Oxide/PVA 154:113–133. DOI: 10.1016/j.biomaterials.2017.10.002.
Inorganic/Organic Interpenetrating Hydrogels with Excellent 39. Mir TA, Iwanaga S, Kurooka T, et al., 2019, Biofabrication
Mechanical Properties and Biocompatibility. Carbon, Offers Future Hope for Tackling Various Obstacles and
111:18–27. DOI: 10.1016/j.carbon.2016.07.038. Challenges in Tissue Engineering and Regenerative Medicine:
28. Zhao X, Zhang Q, Chen D, et al., 2010, Enhanced Mechanical A Perspective. Int J Bioprint, 5:153. DOI: 10.18063/ijb.
Properties of Graphene-Based Poly(vinyl alcohol) v5i1.153.
Composites. Macromolecules, 44:2392–2392. DOI: 10.1021/ 40. Ng WL, Chua CK, Shen YF, 2019, Print me an Organ! Why
ma200335d. we are not there yet. Prog Polym Sci, 97:101145. DOI:
29. Wang K, Ruan J, Song H, et al., 2011, Biocompatibility of 10.1016/j.progpolymsci.2019.101145.
Graphene Oxide. Nanoscale Res Lett, 6:1–8. 41. Lee JM, Sing SL, Zhou M, et al., 2018, 3D Bioprinting
30. Gao C, Yao M, Shuai C, et al., 2019, Nano-SiC Reinforced Zn Processes: A Perspective on Classification and Terminology.
Biocomposites Prepared via Laser Melting: Microstructure, Int J Bioprint, 4:151. DOI: 10.18063/ijb.v4i2.151.
International Journal of Bioprinting (2020)–Volume 6, Issue 1 103

