Page 55 - IJB-6-1
P. 55
Gantumur, et al.
Jet Three-dimensional Digital Fabrication for Biological DOI: 10.1016/j.actbio.2014.09.023.
Tissue Manufacturing: Analysis of Alginate Microgel 25. Sakai S, Yamamoto Y, Enkhtuul G, et al., 2017, Inkjetting
Beads Produced by Ink Jet Droplets for Three Dimensional Plus Peroxidase-Mediated Hydrogelation Produces Cell-
Tissue Fabrication. J Imaging Sci Technol, 52(6):060201. laden, Cell-Sized Particles with Suitable Characters for
DOI: 10.2352/J.ImagingSci.Technol.(2008)52:6(060201). Individual Applications. Macromol Biosci, 17(5):1600416.
14. Arai K, Iwanaga S, Toda H, et al., 2011, Three- DOI: 10.1002/mabi.201600416.
Dimensional Inkjet Biofabrication Based on Designed 26. Arai K, Tsukamoto Y, Yoshida H, et al., 2016, The
Images. Biofabrication, 3(3):034113. DOI: 10.1088/1758- Development for Cell-Adhesive Hydrogel for 3D Printing. Int
5082/3/3/034113. J Bioprinting, 2(2):44–53. DOI: 10.18063/IJB.2016.02.002.
15. Sorkio A, Koch L, Koivusalo L, et al., 2018, Human Stem Cell 27. Sakai S, Ueda K, Gantumur E, et al., 2018, Drop-on-Drop
Based Corneal Tissue Mimicking Structures Using Laser- Multimaterial 3D Bioprinting Realized by Peroxidase-
Assisted 3D Bioprinting and Functional Bioinks. Biomaterials, Mediated Cross-Linking. Macromol Rapid Commun,
171:57–71. DOI: 10.1016/j.biomaterials.2018.04.034. 39(3):1700534. DOI: 10.1002/marc.201700534.
16. Kérourédan O, Hakobyan D, Rémy M, et al., 2019, In Situ 28. Sakai S, Mochizuki K, Qu Y, et al., 2018, Peroxidase-
Prevascularization Designed by Laser-assisted Bioprinting: Catalyzed Microextrusion Bioprinting of Cell-Laden
Effect on Bone Regeneration. Biofabrication, 11(4):045002. Hydrogel Constructs in Vaporized Ppm-Level Hydrogen
DOI: 10.1088/1758-5090/ab2620. Peroxide. Biofabrication, 10(4):045007. DOI: 10.1088/1758-
17. Sakai S, Kamei H, Mori T, et al., 2018, Visible Light-Induced 5090/aadc9e.
Hydrogelaton of an Alginate Derivative and Application 29. Gantumur E, Kimura M, Taya M, et al., 2020, Inkjet
to Stereolithographic Bioprinting Using a Visible Light Micropatterning Through Horseradish Peroxidase-mediated
Projector and Acic Red. Biomacromolecules, 19(2):672–9. Hydrogelation for Controlled Cell Immobilization and
DOI: 10.1021/acs.biomac.7b01827. Microtissue Fabrication. Biofabrication, 12(1):011001. DOI:
18. Lam T, Dehne T, Krüger JP, et al., 2019, Photopolymerizable 10.1088/1758-5090/ab3b3c.
Gelatin and Hyaluronic Acid for Stereolithographic 3D 30. Sakai S, Nakahata M, et al., 2017, Horseradish Peroxidase
Bioprinting of Tissue-Engineered Cartilage. J Biomed Mater Catalyzed Hydrogelation for Biomedical, Biopharmaceutical,
Res B, 107(8):2649–57. DOI: 10.1002/jbm.b.34354. and Biofabrication Applications. Chem Asian J, 12(24):3098–
19. Zhuang P, Ng WL, An J, et al., 2019, Layer-By-Layer 109. DOI: 10.1002/asia.201701364.
Ultraviolet Assisted Extrusion-Based (UAE) Bioprinting of 31. Moriyama K, Minamihata K, Wakabayashi R, et al., 2014,
Hydrogel Constructs with High Aspect Ratio for Soft Tissue Enzymatic Preparation of a Redox-Responsive Hydrogel for
Engineering Applications. Plos One, 14(6):e0216776. DOI: Encapsulating and Releasing Living Cells. Chem Commun,
10.1371/journal.pone.0216776. 50(44):5895–8. DOI: 10.1039/c3cc49766f.
20. Placone JK, Engler AJ, 2018, Recent Advances in Extrusion- 32. Gantumur E, Sakai S, Nakahata M, et al., 2017,
Based 3D Printing for Biomedical Applications. Adv Healthc Cytocompatible Enzymatic Hydrogelation Mediated by
Mater, 7(8):e1701161. DOI: 10.1002/adhm.201701161. Glucose and Cysteine Residues. ACS Macro Lett, 6(5):485–8.
21. Tai C, Bouissil S, Gantumur E, et al., 2019, Use of Anionic DOI: 10.1021/acsmacrolett.7b00122.
Polysaccharides in the Development of 3D Bioprinting 33. Gantumur E, Sakai S, Nakahata M, et al., 2019, Horseradish
Technology. Appl Sci, 9(13):2596. DOI: 10.3390/app9132596. Peroxidase-Catalyzed Hydrogelation Consuming Enzyme-
22. Hölzl K, Lin S, Tytgat L, et al., 2016, Bioink Properties Produced Hydrogen Peroxide in the Presence of Reducing
Before, During and After 3D Bioprinting. Biofabrication, Sugars. Soft Matter, 15(10):2163–9. DOI: 10.1039/
8(3):032002. DOI: 10.1088/1758-5090/8/3/032002. c8sm01839a.
23. Ji S, Guvendiren M, et al., 2017, Recent Advances in Bioink 34. Athukoralalage SS, Balu R, Dutta NK, et al., 2019, 3D
Design for 3D Bioprinting of Tissues and Organs. Front Bioprinted Nanocellulose-Based Hydrogels for Tissue
Bioeng Biotechnol, 5:23. DOI: 10.3389/fbioe.2017.00023. Engineering Applications: A Brief Review. Polymers,
24. Das S, Pati F, Choi YJ, et al., 2015, Bioprintable, Cell-Laden 11(5):898. DOI: 10.3390/polym11050898.
Silk Fibroin-Gelatin Hydrogel Supporting Multilineage 35. Markstedt K, Mantas A, Tournier I, et al., 2015, 3D Bioprinting
Differentiation of Stem Cells for Fabrication of Three- Human Chondrocytes with Nanocellulose-Alginate Bioink
Dimensional Tissue Constructs. Acta Biomater, 11:233–46. for Cartilage Tissue Engineering Application. Biomacromol,
International Journal of Bioprinting (2020)–Volume 6, Issue 1 51

