Page 55 - IJB-6-1
        P. 55
     Gantumur, et al.
               Jet  Three-dimensional  Digital Fabrication for Biological   DOI: 10.1016/j.actbio.2014.09.023.
               Tissue Manufacturing:  Analysis of  Alginate  Microgel   25.  Sakai S, Yamamoto Y, Enkhtuul G, et al., 2017, Inkjetting
               Beads Produced by Ink Jet Droplets for Three Dimensional   Plus Peroxidase-Mediated  Hydrogelation  Produces Cell-
               Tissue  Fabrication.  J  Imaging  Sci  Technol,  52(6):060201.   laden, Cell-Sized Particles with Suitable Characters for
               DOI: 10.2352/J.ImagingSci.Technol.(2008)52:6(060201).  Individual  Applications. Macromol Biosci, 17(5):1600416.
           14.  Arai K, Iwanaga S,  Toda H,  et al.,  2011, Three-  DOI: 10.1002/mabi.201600416.
               Dimensional Inkjet Biofabrication  Based on Designed   26.  Arai  K,  Tsukamoto  Y, Yoshida  H,  et al.,  2016, The
               Images.  Biofabrication, 3(3):034113. DOI: 10.1088/1758-  Development for Cell-Adhesive Hydrogel for 3D Printing. Int
               5082/3/3/034113.                                    J Bioprinting, 2(2):44–53. DOI: 10.18063/IJB.2016.02.002.
           15.  Sorkio A, Koch L, Koivusalo L, et al., 2018, Human Stem Cell   27.  Sakai S, Ueda K, Gantumur E, et al., 2018, Drop-on-Drop
               Based  Corneal  Tissue Mimicking  Structures  Using Laser-  Multimaterial  3D Bioprinting  Realized  by Peroxidase-
               Assisted 3D Bioprinting and Functional Bioinks. Biomaterials,   Mediated  Cross-Linking.  Macromol  Rapid  Commun,
               171:57–71. DOI: 10.1016/j.biomaterials.2018.04.034.  39(3):1700534. DOI: 10.1002/marc.201700534.
           16.  Kérourédan O, Hakobyan D, Rémy M, et al., 2019, In Situ   28.  Sakai S, Mochizuki K, Qu  Y,  et al., 2018, Peroxidase-
               Prevascularization  Designed by Laser-assisted Bioprinting:   Catalyzed  Microextrusion  Bioprinting  of Cell-Laden
               Effect on Bone Regeneration. Biofabrication, 11(4):045002.   Hydrogel Constructs in  Vaporized Ppm-Level  Hydrogen
               DOI: 10.1088/1758-5090/ab2620.                      Peroxide. Biofabrication, 10(4):045007. DOI: 10.1088/1758-
           17.  Sakai S, Kamei H, Mori T, et al., 2018, Visible Light-Induced   5090/aadc9e.
               Hydrogelaton  of an  Alginate  Derivative  and  Application   29.  Gantumur E, Kimura  M,  Taya  M,  et  al., 2020, Inkjet
               to Stereolithographic  Bioprinting  Using a  Visible  Light   Micropatterning  Through Horseradish Peroxidase-mediated
               Projector  and Acic  Red.  Biomacromolecules,  19(2):672–9.   Hydrogelation  for Controlled  Cell Immobilization  and
               DOI: 10.1021/acs.biomac.7b01827.                    Microtissue Fabrication. Biofabrication, 12(1):011001. DOI:
           18.  Lam T, Dehne T, Krüger JP, et al., 2019, Photopolymerizable   10.1088/1758-5090/ab3b3c.
               Gelatin  and Hyaluronic  Acid for Stereolithographic 3D   30.  Sakai S, Nakahata M, et al., 2017, Horseradish Peroxidase
               Bioprinting of Tissue-Engineered Cartilage. J Biomed Mater   Catalyzed Hydrogelation for Biomedical, Biopharmaceutical,
               Res B, 107(8):2649–57. DOI: 10.1002/jbm.b.34354.    and Biofabrication Applications. Chem Asian J, 12(24):3098–
           19.  Zhuang  P,  Ng  WL,  An  J,  et  al., 2019, Layer-By-Layer   109. DOI: 10.1002/asia.201701364.
               Ultraviolet Assisted Extrusion-Based (UAE) Bioprinting of   31.  Moriyama K, Minamihata K, Wakabayashi R, et al., 2014,
               Hydrogel Constructs with High Aspect Ratio for Soft Tissue   Enzymatic Preparation of a Redox-Responsive Hydrogel for
               Engineering Applications. Plos One, 14(6):e0216776. DOI:   Encapsulating and Releasing Living Cells. Chem Commun,
               10.1371/journal.pone.0216776.                       50(44):5895–8. DOI: 10.1039/c3cc49766f.
           20.  Placone JK, Engler AJ, 2018, Recent Advances in Extrusion-  32.  Gantumur  E,  Sakai  S, Nakahata  M,  et  al., 2017,
               Based 3D Printing for Biomedical Applications. Adv Healthc   Cytocompatible  Enzymatic  Hydrogelation  Mediated  by
               Mater, 7(8):e1701161. DOI: 10.1002/adhm.201701161.  Glucose and Cysteine Residues. ACS Macro Lett, 6(5):485–8.
           21.  Tai C, Bouissil S, Gantumur E, et al., 2019, Use of Anionic   DOI: 10.1021/acsmacrolett.7b00122.
               Polysaccharides  in the Development of 3D Bioprinting   33.  Gantumur E, Sakai S, Nakahata M, et al., 2019, Horseradish
               Technology. Appl Sci, 9(13):2596. DOI: 10.3390/app9132596.  Peroxidase-Catalyzed  Hydrogelation  Consuming  Enzyme-
           22.  Hölzl K, Lin S,  Tytgat L,  et al., 2016, Bioink Properties   Produced Hydrogen Peroxide in the Presence of Reducing
               Before,  During and  After  3D Bioprinting. Biofabrication,   Sugars.  Soft Matter, 15(10):2163–9. DOI: 10.1039/
               8(3):032002. DOI: 10.1088/1758-5090/8/3/032002.     c8sm01839a.
           23.  Ji S, Guvendiren M, et al., 2017, Recent Advances in Bioink   34.  Athukoralalage  SS, Balu R, Dutta NK,  et al., 2019, 3D
               Design for 3D Bioprinting  of  Tissues and Organs. Front   Bioprinted Nanocellulose-Based  Hydrogels for  Tissue
               Bioeng Biotechnol, 5:23. DOI: 10.3389/fbioe.2017.00023.  Engineering Applications:  A  Brief  Review.  Polymers,
           24.  Das S, Pati F, Choi YJ, et al., 2015, Bioprintable, Cell-Laden   11(5):898. DOI: 10.3390/polym11050898.
               Silk Fibroin-Gelatin Hydrogel Supporting Multilineage   35.  Markstedt K, Mantas A, Tournier I, et al., 2015, 3D Bioprinting
               Differentiation  of Stem Cells for Fabrication  of  Three-  Human Chondrocytes with Nanocellulose-Alginate  Bioink
               Dimensional Tissue Constructs. Acta Biomater, 11:233–46.   for Cartilage Tissue Engineering Application. Biomacromol,
                                       International Journal of Bioprinting (2020)–Volume 6, Issue 1        51
     	
