Page 115 - IJB-6-2
P. 115
Owen, et al.
Rep, 80:1–36. with Multi-scale Porosity. Mater Sci Eng C, 67:51–8. DOI:
2. Gupta D, Singh AK, Dravid A, et al., 2019, Multiscale 10.1016/j.msec.2016.04.087
Porosity in Compressible Cryogenically 3D Printed Gels 14. Whitely M, Rodriguez-Rivera G, Waldron C, et al., 2019,
for Bone Tissue Engineering. ACS Appl Mater Interfaces, Porous PolyHIPE Microspheres for Protein Delivery from
11:20437–52. DOI: 10.1021/acsami.9b05460 an Injectable Bone Graft. Acta Biomat, 93:169–79. DOI:
3. Rustom LE, Boudou T, Nemke BW, et al., 2017, Multiscale 10.1016/j.actbio.2019.01.044
Porosity Directs Bone Regeneration in Biphasic Calcium 15. Lee A, Langford CR, Rodriguez-Lorenzo LM, et al., 2017,
Phosphate Scaffolds. ACS Biomater Sci Eng, 3:2768–78. Bioceramic Nanocomposite Thiol-acrylate polyHIPE
DOI: 10.1021/acsbiomaterials.6b00632 Scaffolds for Enhanced Osteoblastic Cell Culture in 3D.
4. Woodard JR, Hilldore AJ, Lan SK, et al., 2007, The Mechanical Biomat Sci, 5:2035–47. DOI: 10.1039/c7bm00292k
Properties and Osteoconductivity of Hydroxyapatite Bone 16. Dikici BA, Reilly GC, Claeyssens F, 2020, Boosting the
Scaffolds with Multi-scale Porosity. Biomaterials, 28:45–54. Osteogenic and Angiogenic Performance of Multiscale
DOI: 10.1016/j.biomaterials.2006.08.021 Porous Polycaprolactone Scaffolds by in vitro Generated
5. Roosa SM, Kemppainen JM, Moffitt EN, et al., 2010, The Pore Extracellular Matrix Decoration. ACS Appl Mater Interfaces,
Size of Polycaprolactone Scaffolds has Limited Influence on 12:12510–24. DOI: 10.1021/acsami.9b23100
Bone Regeneration in an in vivo Model. J Biomed Mater Res 17. Dikici BA, Sherborne C, Reilly GC, et al., 2019, Emulsion
A, 92:359–68. DOI: 10.1002/jbm.a.32381 Templated Scaffolds Manufactured from Photocurable
6. Vand K, Kaplan D, 2005, Porosity of 3D Biomaterial Polycaprolactone. Polymer, 175:243–54. DOI: 10.1016/j.
Scaffolds and Osteogenesis. Biomaterials, 26:5474–91. DOI: polymer.2019.05.023
10.1016/j.biomaterials.2005.02.002 18. Dikici BA, Dikici S, Reilly GC, et al., 2019, A Novel Bilayer
7. Land LQ, Choong C, 2013, Three-dimensional Scaffolds for Polycaprolactone Membrane for Guided Bone Regeneration:
Tissue Engineering Applications: Role of Porosity and Pore Combining Electrospinning and Emulsion Templating.
Size. Tissue Eng Part B Rev, 19:485-502. DOI: 10.1089/ten. Materials (Basel), 12:12162643. DOI: 10.3390/ma12162643
teb.2012.0437 19. Cameron NR, 2005, High Internal Phase Emulsion
8. Owen R, Sherborne C, Paterson T, et al., 2016, Emulsion Templating as a Route to Well-defined Porous Polymers.
Templated Scaffolds with Tunable Mechanical Properties Polymer, 46:1439–49. DOI: 10.1016/j.polymer.2004.11.097
for Bone Tissue Engineering. J Mech Behav Biomed Mater, 20. Krajnc PH, 2014, PolyHIPEs from Methyl Methacrylate:
54:159–72. DOI: 10.1016/j.jmbbm.2015.09.019 Hierarchically Structured Microcellular Polymers with
9. Sherborne C, Owen R, Reilly GC, et al., 2018, Light-based Exceptional Mechanical Properties. Polymer, 55:4420–4.
Additive Manufacturing of PolyHIPEs: Controlling the DOI: 10.1016/j.polymer.2014.07.007
Surface Porosity for 3D Cell Culture Applications. Mater 21. Iand G, Silverstein MS, 2010, Polymerized pickering
Des, 156:494–503. DOI: 10.1016/j.matdes.2018.06.061 HIPEs: Effects of synthesis parameters on porous structure.
10. Malayeri A, Sherborne C, Paterson T, et al., 2016, J Polym Sci Part A Polym Chem, 48:1516–25. DOI: 10.1002/
Osteosarcoma growth on trabecular bone mimicking pola.23911
structures manufactured via laser direct write. Int J Bioprint, 22. Bokhari M, Carnachan RJ, Przyborski SA, et al., 2007,
2:67–72. DOI: 10.18063/ijb.2016.02.005 Emulsion-templated Porous Polymers as Scaffolds for Three
11. Owen R, Sherborne C, Reilly GC, et al., 2015, Data for the Dimensional Cell Culture: Effect of Synthesis Parameters
Analysis of PolyHIPE Scaffolds with Tunable Mechanical on Scaffold Formation and Homogeneity. J Mater Chem,
Properties for Bone Tissue Engineering. Data Brief, 5:616– 17:4088–94. DOI: 10.1039/b707499a
20. DOI: 10.1016/j.dib.2015.09.051 23. Carnachan RJ, Bokhari M, Przyborski SA, et al., 2006,
12. Paterson TE, Gigliobianco G, Sherborne C, et al., 2018, Tailoring the Morphology of Emulsion-templated Porous
Porous Microspheres Support Mesenchymal Progenitor Polymers. Soft Matter, 2:608–16. DOI: 10.1039/b603211g
Cell Ingrowth and Stimulate Angiogenesis. APL Bioeng, 24. Richez A, Deleuze H, Vedrenne P, et al., 2005, Preparation of
2:026103. DOI: 10.1063/1.5008556 Ultra-low-density Microcellular Materials. J Appl Polym Sci,
13. Wang AJ, Paterson T, Owen R, et al., 2016, Photocurable High 96:2053–63. DOI: 10.1002/app.21668
Internal Phase Emulsions (HIPEs) Containing Hydroxyapatite 25. Xu H, Zheng X, Huang Y, et al., 2016, Interconnected
for Additive Manufacture of Tissue Engineering Scaffolds Porous Polymers with Tunable Pore Throat Size Prepared via
International Journal of Bioprinting (2020)–Volume 6, Issue 2 111

