Page 115 - IJB-6-2
P. 115

Owen, et al.
               Rep, 80:1–36.                                       with Multi-scale Porosity. Mater Sci Eng C, 67:51–8. DOI:
           2.   Gupta  D,  Singh  AK,  Dravid  A, et  al.,  2019,  Multiscale   10.1016/j.msec.2016.04.087
               Porosity  in  Compressible  Cryogenically  3D  Printed  Gels   14.  Whitely  M,  Rodriguez-Rivera  G, Waldron  C, et al.,  2019,
               for  Bone  Tissue  Engineering.  ACS  Appl Mater Interfaces,   Porous  PolyHIPE  Microspheres  for  Protein  Delivery  from
               11:20437–52. DOI: 10.1021/acsami.9b05460            an  Injectable  Bone  Graft.  Acta  Biomat,  93:169–79.  DOI:
           3.   Rustom LE, Boudou T, Nemke BW, et al., 2017, Multiscale   10.1016/j.actbio.2019.01.044
               Porosity  Directs  Bone  Regeneration  in  Biphasic  Calcium   15.  Lee A, Langford CR, Rodriguez-Lorenzo LM, et al., 2017,
               Phosphate  Scaffolds.  ACS Biomater Sci Eng,  3:2768–78.   Bioceramic   Nanocomposite   Thiol-acrylate   polyHIPE
               DOI: 10.1021/acsbiomaterials.6b00632                Scaffolds  for  Enhanced  Osteoblastic  Cell  Culture  in  3D.
           4.   Woodard JR, Hilldore AJ, Lan SK, et al., 2007, The Mechanical   Biomat Sci, 5:2035–47. DOI: 10.1039/c7bm00292k
               Properties  and  Osteoconductivity  of  Hydroxyapatite  Bone   16.  Dikici  BA,  Reilly  GC,  Claeyssens  F,  2020,  Boosting  the
               Scaffolds with Multi-scale Porosity. Biomaterials, 28:45–54.   Osteogenic  and  Angiogenic  Performance  of  Multiscale
               DOI: 10.1016/j.biomaterials.2006.08.021             Porous  Polycaprolactone  Scaffolds  by  in vitro  Generated
           5.   Roosa SM, Kemppainen JM, Moffitt EN, et al., 2010, The Pore   Extracellular Matrix Decoration. ACS Appl Mater Interfaces,
               Size of Polycaprolactone Scaffolds has Limited Influence on   12:12510–24. DOI: 10.1021/acsami.9b23100
               Bone Regeneration in an in vivo Model. J Biomed Mater Res   17.  Dikici BA, Sherborne C, Reilly GC, et al., 2019, Emulsion
               A, 92:359–68. DOI: 10.1002/jbm.a.32381              Templated  Scaffolds  Manufactured  from  Photocurable
           6.   Vand  K,  Kaplan  D,  2005,  Porosity  of  3D  Biomaterial   Polycaprolactone.  Polymer,  175:243–54.  DOI:  10.1016/j.
               Scaffolds and Osteogenesis. Biomaterials, 26:5474–91. DOI:   polymer.2019.05.023
               10.1016/j.biomaterials.2005.02.002              18.  Dikici BA, Dikici S, Reilly GC, et al., 2019, A Novel Bilayer
           7.   Land LQ, Choong C, 2013, Three-dimensional Scaffolds for   Polycaprolactone Membrane for Guided Bone Regeneration:
               Tissue Engineering Applications: Role of Porosity and Pore   Combining  Electrospinning  and  Emulsion  Templating.
               Size. Tissue Eng Part B Rev, 19:485-502. DOI: 10.1089/ten.  Materials (Basel), 12:12162643. DOI: 10.3390/ma12162643
               teb.2012.0437                                   19.  Cameron  NR,  2005,  High  Internal  Phase  Emulsion
           8.   Owen  R,  Sherborne  C,  Paterson  T, et al.,  2016,  Emulsion   Templating  as  a  Route  to  Well-defined  Porous  Polymers.
               Templated  Scaffolds  with  Tunable  Mechanical  Properties   Polymer, 46:1439–49. DOI: 10.1016/j.polymer.2004.11.097
               for Bone Tissue Engineering. J Mech Behav Biomed Mater,   20.  Krajnc  PH,  2014,  PolyHIPEs  from  Methyl  Methacrylate:
               54:159–72. DOI: 10.1016/j.jmbbm.2015.09.019         Hierarchically  Structured  Microcellular  Polymers  with
           9.   Sherborne C, Owen R, Reilly GC, et al., 2018, Light-based   Exceptional  Mechanical  Properties.  Polymer,  55:4420–4.
               Additive  Manufacturing  of  PolyHIPEs:  Controlling  the   DOI: 10.1016/j.polymer.2014.07.007
               Surface  Porosity  for  3D  Cell  Culture  Applications.  Mater   21.  Iand  G,  Silverstein  MS,  2010,  Polymerized  pickering
               Des, 156:494–503. DOI: 10.1016/j.matdes.2018.06.061  HIPEs: Effects of synthesis parameters on porous structure.
           10.  Malayeri  A,  Sherborne  C,  Paterson  T, et al.,  2016,   J Polym Sci Part A Polym Chem, 48:1516–25. DOI: 10.1002/
               Osteosarcoma  growth  on  trabecular  bone  mimicking   pola.23911
               structures manufactured via laser direct write. Int J Bioprint,   22.  Bokhari  M,  Carnachan  RJ,  Przyborski  SA,  et  al.,  2007,
               2:67–72. DOI: 10.18063/ijb.2016.02.005              Emulsion-templated Porous Polymers as Scaffolds for Three
           11.  Owen R, Sherborne C, Reilly GC, et al., 2015, Data for the   Dimensional  Cell  Culture:  Effect  of  Synthesis  Parameters
               Analysis  of  PolyHIPE  Scaffolds  with  Tunable  Mechanical   on  Scaffold  Formation  and  Homogeneity.  J  Mater Chem,
               Properties for Bone Tissue Engineering. Data Brief, 5:616–  17:4088–94. DOI: 10.1039/b707499a
               20. DOI: 10.1016/j.dib.2015.09.051              23.  Carnachan  RJ,  Bokhari  M,  Przyborski  SA,  et  al.,  2006,
           12.  Paterson  TE,  Gigliobianco  G,  Sherborne  C, et al.,  2018,   Tailoring  the  Morphology  of  Emulsion-templated  Porous
               Porous  Microspheres  Support  Mesenchymal  Progenitor   Polymers. Soft Matter, 2:608–16. DOI: 10.1039/b603211g
               Cell  Ingrowth  and  Stimulate  Angiogenesis.  APL Bioeng,   24.  Richez A, Deleuze H, Vedrenne P, et al., 2005, Preparation of
               2:026103. DOI: 10.1063/1.5008556                    Ultra-low-density Microcellular Materials. J Appl Polym Sci,
           13.  Wang AJ, Paterson T, Owen R, et al., 2016, Photocurable High   96:2053–63. DOI: 10.1002/app.21668
               Internal Phase Emulsions (HIPEs) Containing Hydroxyapatite   25.  Xu  H,  Zheng  X,  Huang  Y,  et  al.,  2016,  Interconnected
               for Additive  Manufacture  of  Tissue  Engineering  Scaffolds   Porous Polymers with Tunable Pore Throat Size Prepared via

                                       International Journal of Bioprinting (2020)–Volume 6, Issue 2       111
   110   111   112   113   114   115   116   117   118   119   120