Page 52 - IJB-6-2
P. 52

3D freeform printing of nanocomposite hydrogels
               Printing of Mineral-polymer  Bone Substitutes Based on   26.  Gallagher  PK,  Johnson  DW,  1973,  The  Effects  of  Sample
               Sodium  Alginate and Calcium  Phosphate.  Beilstein  J   Size and Heating Rate on the Kinetics of the  Thermal
               Nanotechnol, 7:1794–9. DOI: 10.3762/bjnano.7.172.   Decomposition of CaCO3. Thermochim Acta, 6:67–83. DOI:
           14.  Lee H, Kim Y, Kim S, et al., 2014, Mineralized Biomimetic   10.1016/0040-6031(73)80007-3.
               Collagen/Alginate/Silica  Composite  Scaffolds  Fabricated   27.  Li  ZY, Su  YL,  Xie  BQ,  et  al.,  2013, A  Tough  Hydrogel-
               by a Low-temperature Bio-plotting Process for Hard  Tissue   hydroxyapatite  Bone-like  Composite  Fabricated  In  Situ  by
               Regeneration: Fabrication, Characterisation and In Vitro Cellular   the Electrophoresis Approach. J Mater Chem B, 1:1755–64.
               Activities. J Mater Chem B, 2:5785. DOI: 10.1039/c4tb00931b.  DOI: 10.1039/c3tb00246b.
           15.  Bhattacharjee  T, Zehnder  SM, Rowe KG, et al., 2015,   28.  Sarvestani AS, He XZ, Jabbari E, 2008, The role of filler-
               Writing in the Granular Gel Medium. Sci Adv, 1:e1500655.   matrix  interaction  on viscoelastic  response of biomimetic
               DOI: 10.1126/sciadv.1500655.                        nanocomposite  hydrogels.  J  Nanomater,  2008:9.  DOI:
           16.  Highley CB, Rodell CB, Burdick JA, 2015, Direct 3D Printing   10.1155/2008/126803.
               of Shear-thinning Hydrogels into Self-healing  Hydrogels.   29.  Song X, Zhu C, Fan D, et al., 2017, A Novel Human-like
               Adv Mater, 27:5075–9. DOI: 10.1002/adma.201501234.  Collagen  Hydrogel  Scaffold  with  Porous  Structure  and
           17.  Hinton  TJ, Jallerat  Q, Palchesko RN, et al.,  2015, Three-  Sponge-like Properties.  Polymers,  9:638.  DOI:  10.3390/
               dimensional  Printing of Complex Biological  Structures by   polym9120638.
               Freeform Reversible Embedding of Suspended Hydrogels.   30.  Sarvestani AS, Jabbari E, 2008, A Model for the Viscoelastic
               Sci Adv, 1:e1500758. DOI: 10.1002/adma.201501234.   Behavior  of  Nanofilled  Hydrogel  Composites  Under
           18.  Hinton  TJ, Hudson A, Pusch K, et  al., 2016, 3D Printing   Oscillatory Shear Loading. Polym Compos, 29:326–36. DOI:
               PDMS Elastomer in a Hydrophilic Support Bath via Freeform   10.1002/pc.20416.
               Reversible Embedding.  ACS Biomater Sci Eng, 2:1781–6.   31.  Desimone MF, Helary C, Quignard S, et al., 2011, In Vitro
               DOI: 10.1021/acsbiomaterials.6b00170.               Studies  and  Preliminary  In  Vivo  Evaluation  of  Silicified
           19.  Rodriguez MJ, Dixon TA, Cohen E, et al., 2018, 3D Freeform   Concentrated  Collagen Hydrogels.  ACS Appl  Mater
               Printing of Silk Fibroin.  Acta Biomater,  71:379–87.  DOI:   Interfaces, 3:3831–8. DOI: 10.1021/am2009844.
               10.1016/j.actbio.2018.02.035.                   32.  van Hoogmoed CG, Busscher HJ, de Vos P, 2003, Fourier
           20.  Grosskopf AK, Truby RL, Kim H, et al., 2018, Viscoplastic   Transform  Infrared Spectroscopy  Studies  of  Alginate-PLL
               Matrix Materials for Embedded 3D Printing. ACS Appl Mater   Capsules with Varying Compositions. J Biomed Mater Res
               Interfaces, 10:23353–61. DOI: 10.1021/acsami.7b19818.  Part A, 67A:172–8. DOI: 10.1002/jbm.a.10086.
           21.  Pan HM, Chen S, Jang  TS, et  al., 2019, Plant Seed-  33.  Ibrahim  S, Kothapalli  CR, Kang QK, et al., 2011,
               inspired Cell Protection, Dormancy, and Growth for Large-  Characterization  of  Glycidyl  Methacrylate-crosslinked
               scale  Biofabrication.  Biofabrication,  11:025008.  DOI:   Hyaluronan  Hydrogel  Scaffolds  Incorporating  Elastogenic
               10.1088/1758-5090/ab03ed.                           Hyaluronan  Oligomers.  Acta Biomater,  7:653–65.  DOI:
           22.  Furuichi  K,  Oaki  Y,  Imai  H,  2006,  Preparation  of   10.1016/j.actbio.2010.08.006.
               Nanotextured  and  Nanofibrous  Hydroxyapatite  Through   34.  Berzina-Cimdina  L, Borodajenko N, 2012, Research of
               Dicalcium Phosphate with Gelatin. Chem Mater, 18:229–34.   Calcium Phosphates Using  Fourier  Transform Infrared
               DOI: 10.1021/cm052213z.                             Spectroscopy. InTech, Rijeka. DOI: 10.5772/36942.
           23.  Thanh NT, Maclean N, Mahiddine S, 2014, Mechanisms of   35.  Dotzauer DM, Dai J, Sun L, et al., 2006, Catalytic Membranes
               Nucleation and Growth of Nanoparticles in Solution. Chem   Prepared Using Layer-by-layer Adsorption of Polyelectrolyte/
               Rev, 114:7610–30. DOI: 10.1021/cr400544s.           Metal Nanoparticle Films in Porous Supports.  Nano Lett,
           24.  Bastami A, Allahgholi M, Pourafshary P, 2014, Experimental   6:2268–72. DOI: 10.1021/nl061700q.
               and  Modelling  Study  of  the  Solubility  of  CO2  in  Various   36.  Ahmed SR, Kim J,  Tran  VT, et al., 2017,  In Situ Self-
               CaCl2 Solutions at Different Temperatures and Pressures. Pet   assembly of Gold Nanoparticles on Hydrophilic and
               Sci, 11:569–77. DOI: 10.1007/s12182-014-0373-1.     Hydrophobic  Substrates  for  Influenza  Virus-sensing
           25.  Hosoda  N,  Kato T,  2001, Thin-film  Formation  of  Calcium   Platform.  Sci Rep,  7:44495. Available  from:  https://www.
               Carbonate  Crystals:  Effects  of  Functional  Groups  of   nature.com/articles/srep44495#supplementary-information.
               Matrix Polymers.  Chem Mater,  13:688–93.  DOI:  10.1021/  DOI: 10.1038/srep44495.
               cm000817r.                                      37.  Jakus AE, Taylor SL, Geisendorfer NR, et al., 2015, Metallic

           48                          International Journal of Bioprinting (2020)–Volume 6, Issue 2
   47   48   49   50   51   52   53   54   55   56   57