Page 63 - IJB-6-2
P. 63
Zolfagharian, et al.
actuator was designed and bioprinted to maximize Pattern-driven 4D Printing. J Sens Actuators A Physical,
the bending performance. It was shown through 274:231–43. DOI: 10.1016/j.sna.2018.03.034.
a series of experiments that the two-material TO 11. Zolfagharian A, Denk M, Bodaghi M, et al., 2019, Topology-
improves the bending performance compared to Optimized 4D Printing of a Soft Actuator. J Acta Mech Solida
uniformly bioprinted soft actuator due to optimized Sin, 253:1–13. DOI: 10.1007/s10338-019-00137-z.
materials configuration within the stack of layers 12. Lee J, Sing S, Yeong W, 2020, Bioprinting of Multimaterials
with constant volume. The results demonstrate with Computer-aided Design/Computer-aided Manufacturing.
the efficacy of multimaterial TO-based design to Int J, 6:47. DOI: 10.18063/ijb.v6i1.245
bring about the full potential of the performance 13. Zhang B, Chrisey DB, Cristescu R, et al., 2020, Solvent-
of bioprinted soft actuators. based Extrusion 3D Printing for the Fabrication of Tissue
Engineering Scaffolds. Int J Bioprint, 6:211. DOI: 10.18063/
References ijb.v6i1.211.
14. Kaynak A, Zolfagharian A, 2019, Stimuli-Responsive
1. Cohen E, Trimmer BA, Vikas V, et al., 2015, Design Polymer Systems Recent Manufacturing Techniques and
Methodologies for Soft-Material Robots Through Additive Applications. Multidisciplinary Digital Publishing Institute,
Manufacturing, From Prototyping to Locomotion. in Switzerland. DOI: 10.3390/ma12152380.
ASME 2015 International Design Engineering Technical 15. Pilate F, Mincheva R, De Winter J, et al., 2014, Design
Conferences and Computers and Information in Engineering of Multistimuli-responsive Shape-memory Polymer
Conference. American Society of Mechanical Engineers, Materials by Reactive Extrusion. Chem Mater, 26:5860–7.
New York. DOI: 10.1115/detc2015-47507. DOI: 10.1021/cm5020543.
2. Bodaghi M, Damanpack A, Liao W, 2017, Adaptive 16. Shiga T, Kurauchi T, 1990, Deformation of Polyelectrolyte
Metamaterials by Functionally Graded 4D Printing. Mater Gels under the Influence of Electric Field. J Appl Polym Sci,
Des, 135:26–36. DOI: 10.1016/j.matdes.2017.08.069. 39:2305–20. DOI: 10.1002/app.1990.070391110.
3. Choong YY, Maleksaeedi S, Eng H, et al., 2020, High Speed 17. Li Y, Sun Y, Xiao Y, et al., 2016, Electric Field Actuation
4D Printing of Shape Memory Polymers with Nanosilica. Appl of tough Electroactive Hydrogels Cross-linked by Functional
Mater Today, 18:100515. DOI: 10.1016/j.apmt.2019.100515. Triblock Copolymer Micelles. ACS Appl Mater Interfaces,
4. Zolfagharian A, Khoo S, Kouzani A, et al., 2016, Evolution 8:26326–31. DOI: 10.1021/acsami.6b08841.
of 3D Printed Soft Actuators. J Sens Actuators A Physical, 18. Sigmund O, Maute KJ, 2013, Optimization, Topology
250:258–72. DOI: 10.1016/j.sna.2016.09.028. Optimization Approaches. Struct Multidiscip Optim,
5. Bodaghi, M., Zolfagharian A, Serjouei A, et al., 2020, 48:1031–55. DOI: 10.1007/s00158-013-0978-6.
Reversible Energy Absorbing Meta-Sandwiches by 4D 19. Huang X, Xie YM, 2007, Design, Convergent and Mesh-
FDM Printing. Int J Mech Sci, 173:105451. DOI: 10.1016/j. independent Solutions for the bi-directional Evolutionary
ijmecsci.2020.105451. Structural Optimization Method. Finite Elem Anal Des,
6. Maute K, Tkachuk A, Wu J, et al., 2015, Level set Topology 43:1039–49. DOI: 10.1016/j.finel.2007.06.006.
Optimization of Printed Active Composites. J Mech Des, 20. van Dijk NP, Maute K, Langelaar M, et al., 2013, Level-set
137:111402. Methods for Structural Topology Optimization: A Review.
7. Yu C, Jiang J, 2020, A Perspective on Using Machine Learning 48:437–72. DOI: 10.1007/s00158-013-0912-y.
in 3D Bioprinting. Int J Bioprint, 6:95. DOI: 10.18063/ijb. 21. Bendsøe MP, Sigmund O, 1999, Material Interpolation
v6i1.253. Schemes in Topology Optimization. J Arch Appl Mech.,
8. Hamel CM, Roach DJ, Long KN, et al., 2019, Machine- 69:635–54.
learning Based Design of Active Composite Structures 22. Zolfagharian A, Denk, Bodaghi M, et al., 2018, Polyelectrolyte
for 4D Printing. J Smart Mater Struct, 28:65005. Soft Actuators: 3D Printed Chitosan and Cast Gelatin. J 3D
DOI: 10.1088/1361-665x/ab1439. Print Addit Manuf, 5:138–50. DOI: 10.1089/3dp.2017.0054.
9. Bodaghi M, Noroozi R, Zolfagharian A, et al., 2019, 23. Yang R, Chen C, 1996, Stress-based Topology Optimization.
4D Printing Self-morphing Structures. J Mater, 12:1353. J Struct Optim, 12:98–105.
DOI: 10.3390/ma12081353. 24. Hongying Z, 2018, Development of Topology Optimized 3D
10. Zolfagharian A, Kaynak A, Khoo SY, et al., 2018, Printed Soft Grippers and Dielectric Soft Sensors, Theses and
International Journal of Bioprinting (2020)–Volume 6, Issue 2 59

