Page 63 - IJB-6-2
P. 63

Zolfagharian, et al.
           actuator was designed and bioprinted to maximize        Pattern-driven  4D  Printing.  J  Sens Actuators A  Physical,
           the bending performance. It was shown through           274:231–43. DOI: 10.1016/j.sna.2018.03.034.
           a series of experiments that the two-material TO    11.  Zolfagharian A, Denk M, Bodaghi M, et al., 2019, Topology-
           improves  the  bending  performance  compared  to       Optimized 4D Printing of a Soft Actuator. J Acta Mech Solida
           uniformly bioprinted soft actuator due to optimized     Sin, 253:1–13. DOI: 10.1007/s10338-019-00137-z.
           materials configuration within the stack of layers   12.  Lee J, Sing S, Yeong W, 2020, Bioprinting of Multimaterials
           with  constant  volume.  The  results  demonstrate      with Computer-aided Design/Computer-aided Manufacturing.
           the efficacy of multimaterial TO-based design to        Int J, 6:47. DOI: 10.18063/ijb.v6i1.245
           bring about the full potential of the performance   13.  Zhang  B,  Chrisey  DB,  Cristescu  R,  et  al.,  2020,  Solvent-
           of bioprinted soft actuators.                           based  Extrusion  3D  Printing  for  the  Fabrication  of  Tissue
                                                                   Engineering Scaffolds. Int J Bioprint, 6:211. DOI: 10.18063/
           References                                              ijb.v6i1.211.

                                                               14.  Kaynak  A,  Zolfagharian  A,  2019,  Stimuli-Responsive
           1.   Cohen  E,  Trimmer  BA,  Vikas  V,  et al.,  2015,  Design   Polymer  Systems  Recent  Manufacturing  Techniques  and
               Methodologies  for  Soft-Material  Robots  Through Additive   Applications. Multidisciplinary Digital Publishing Institute,
               Manufacturing,  From  Prototyping  to  Locomotion.  in   Switzerland. DOI: 10.3390/ma12152380.
               ASME  2015  International  Design  Engineering  Technical   15.  Pilate  F,  Mincheva  R,  De  Winter  J,  et  al.,  2014,  Design
               Conferences and Computers and Information in Engineering   of   Multistimuli-responsive   Shape-memory   Polymer
               Conference.  American  Society  of  Mechanical  Engineers,   Materials  by  Reactive  Extrusion.  Chem  Mater,  26:5860–7.
               New York. DOI: 10.1115/detc2015-47507.              DOI: 10.1021/cm5020543.
           2.   Bodaghi  M,  Damanpack  A,  Liao  W,  2017,  Adaptive   16.  Shiga T, Kurauchi T, 1990, Deformation of Polyelectrolyte
               Metamaterials  by  Functionally  Graded  4D  Printing.  Mater   Gels under the Influence of Electric Field. J Appl Polym Sci,
               Des, 135:26–36. DOI: 10.1016/j.matdes.2017.08.069.  39:2305–20. DOI: 10.1002/app.1990.070391110.
           3.   Choong YY, Maleksaeedi S, Eng H, et al., 2020, High Speed   17.  Li Y, Sun Y, Xiao Y, et al., 2016, Electric Field Actuation
               4D Printing of Shape Memory Polymers with Nanosilica. Appl   of tough Electroactive Hydrogels Cross-linked by Functional
               Mater Today, 18:100515. DOI: 10.1016/j.apmt.2019.100515.  Triblock  Copolymer  Micelles.  ACS Appl  Mater Interfaces,
           4.   Zolfagharian A, Khoo S, Kouzani A, et al., 2016, Evolution   8:26326–31. DOI: 10.1021/acsami.6b08841.
               of 3D Printed Soft Actuators. J Sens Actuators A Physical,   18.  Sigmund  O,  Maute  KJ,  2013,  Optimization,  Topology
               250:258–72. DOI: 10.1016/j.sna.2016.09.028.         Optimization  Approaches.  Struct Multidiscip  Optim,
           5.   Bodaghi,  M.,  Zolfagharian  A,  Serjouei  A,  et al.,  2020,   48:1031–55. DOI: 10.1007/s00158-013-0978-6.
               Reversible  Energy  Absorbing  Meta-Sandwiches  by  4D   19.  Huang  X,  Xie  YM,  2007,  Design,  Convergent  and  Mesh-
               FDM Printing. Int J Mech Sci, 173:105451. DOI: 10.1016/j.  independent  Solutions  for  the  bi-directional  Evolutionary
               ijmecsci.2020.105451.                               Structural  Optimization  Method.  Finite  Elem  Anal Des,
           6.   Maute K, Tkachuk A, Wu J, et al., 2015, Level set Topology   43:1039–49. DOI: 10.1016/j.finel.2007.06.006.
               Optimization  of  Printed  Active  Composites.  J  Mech  Des,   20.  van Dijk NP, Maute K, Langelaar M, et al., 2013, Level-set
               137:111402.                                         Methods  for  Structural  Topology  Optimization: A  Review.
           7.   Yu C, Jiang J, 2020, A Perspective on Using Machine Learning   48:437–72. DOI: 10.1007/s00158-013-0912-y.
               in 3D Bioprinting. Int J Bioprint, 6:95. DOI: 10.18063/ijb.  21.  Bendsøe  MP,  Sigmund  O,  1999,  Material  Interpolation
               v6i1.253.                                           Schemes  in  Topology  Optimization.  J  Arch  Appl  Mech.,
           8.   Hamel  CM,  Roach  DJ,  Long  KN,  et  al.,  2019,  Machine-  69:635–54.
               learning  Based  Design  of  Active  Composite  Structures   22.  Zolfagharian A, Denk, Bodaghi M, et al., 2018, Polyelectrolyte
               for  4D  Printing.  J  Smart  Mater Struct,  28:65005.    Soft Actuators: 3D Printed Chitosan and Cast Gelatin. J 3D
               DOI: 10.1088/1361-665x/ab1439.                      Print Addit Manuf, 5:138–50. DOI: 10.1089/3dp.2017.0054.
           9.   Bodaghi  M,  Noroozi  R,  Zolfagharian  A,  et  al.,  2019,   23.  Yang R, Chen C, 1996, Stress-based Topology Optimization.
               4D  Printing  Self-morphing  Structures.  J  Mater,  12:1353.    J Struct Optim, 12:98–105.
               DOI: 10.3390/ma12081353.                        24.  Hongying Z, 2018, Development of Topology Optimized 3D
           10.  Zolfagharian  A,  Kaynak  A,  Khoo  SY,  et  al.,  2018,   Printed Soft Grippers and Dielectric Soft Sensors, Theses and

                                       International Journal of Bioprinting (2020)–Volume 6, Issue 2        59
   58   59   60   61   62   63   64   65   66   67   68