Page 102 - IJB-10-6
P. 102

International Journal of Bioprinting                           3D bioprinting techniques & hydrogels materials




            221. Collins MN, Ren G, Young K, Pina S, Reis RL, Oliveira JM.      doi: 10.1155/2016/2152435
               Scaffold  fabrication technologies and  structure/function   231. Elkhenany H, Amelse L, Caldwell M, Abdelwahed R,
               properties in bone tissue engineering.  Adv  Funct  Mater.
               2021;31(21):2010609.                               Dhar M. Impact of the source and serial passaging of goat
               doi: 10.1002/adfm.202010609                        mesenchymal  stem  cells  on  osteogenic  differentiation
                                                                  potential: implications for bone tissue engineering.
            222. Xu W, Jambhulkar S, Zhu Y, et al. 3D printing for polymer/  J Anim Sci Biotechnol. 2016;7:16.
               particle-based processing: a review.  Compos. B Eng.      doi: 10.1186/s40104-016-0074-z
               2021;223:109102.
               doi: 10.1016/j.compositesb.2021.109102          232. Volk SW, Wang Y, Hankenson KD. Effects of donor
                                                                  characteristics and ex vivo expansion on canine mesenchymal
            223. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix   stem cell properties: implications for MSC-based therapies.
               elasticity directs stem cell lineage specification.  Cell.   Cell Transplant. 2012;21(10):2189-2200.
               2006;126(4):677-689.                               doi: 10.3727/096368912x636821
               doi: 10.1016/j.cell.2006.06.044
                                                               233. Baxter FR, Bowen CR, Turner IG, Dent AC. Electrically
            224. Zhou X, Tenaglio S, Esworthy T, et al. Three-dimensional   active  bioceramics:  a  review  of  interfacial responses.
               printing biologically inspired DNA-based gradient scaffolds   Ann Biomed Eng. 2010;38(6):2079-2092.
               for cartilage tissue regeneration. ACS Appl Mater Interfaces.      doi: 10.1007/s10439-010-9977-6
               2020;12(29):33219-33228.
               doi: 10.1021/acsami.0c07918                     234. Jiang L, Wang Y, Liu Z, et al. Three-dimensional printing
                                                                  and injectable conductive hydrogels for tissue engineering
            225. Demoly F, Dunn ML, Wood KL, Qi HJ, André JC. The status,   application. Tissue Eng Part B Rev. 2019;25(5):398-411.
               barriers, challenges, and future in design for 4D printing.      doi: 10.1089/ten.TEB.2019.0100
               Mater Des. 2021;212:110193.
               doi: 10.1016/j.matdes.2021.110193               235. Wei K, Zhu M, Sun Y, et al. Robust biopolymeric
                                                                  supramolecular  “Host−Guest  Macromer”  hydrogels
            226. Agarwala S, Goh GL, Goh GD, Dikshit V, Yeong WY.
               Chapter 10 – 3D and 4D printing of polymer/CNTs-based   reinforced by  in situ formed multivalent nanoclusters
               conductive  composites.  In:  Sadasivuni  KK,  Deshmukh   for  cartilage  regeneration.  Macromolecules.   2016;
               K, Almaadeed MA, eds.  3D and 4D Printing of Polymer   49(3):866-875.
               Nanocomposite Materials. Elsevier; 2020:297-324.      doi: 10.1021/acs.macromol.5b02527
               doi:10.1016/B978-0-12-816805-9.00010-7          236. Salzlechner C, Haghighi T, Huebscher I, et al. Adhesive
            227. Ryan  KR,  Down  MP,  Banks  CE.  Future  of  additive   hydrogels  for  maxillofacial  tissue  regeneration  using
               manufacturing: overview of 4D and 3D printed smart and   minimally  invasive  procedures.  Adv Healthc Mater.
               advanced materials and their applications.  Chem Eng J.   2020;9(4):e1901134.
               2021;403:126162.                                   doi: 10.1002/adhm.201901134
               doi: 10.1016/j.cej.2020.126162                  237. Khare D, Basu B, Dubey AK. Electrical stimulation and
            228. Pintus E, Baldassarri M, Perazzo L, Natali S, Ghinelli D,   piezoelectric biomaterials for bone tissue engineering
               Buda R. Stem cells in osteochondral tissue engineering.    applications. Biomaterials. 2020;258:120280.
               Adv Exp Med Biol. 2018;1058:359-372.               doi: 10.1016/j.biomaterials.2020.120280
               doi: 10.1007/978-3-319-76711-6_16               238. Zhang X, Zhang C, Lin Y, et al. Nanocomposite
            229. Rennerfeldt DA, Van Vliet KJ. Concise review: when   membranes enhance bone regeneration through restoring
               colonies are not clones: evidence and implications of   physiological electric microenvironment.  ACS Nano.
               intracolony heterogeneity in mesenchymal stem cells.    2016;10(8):7279-7286.
               Stem Cells. 2016;34(5):1135-1141.                  doi: 10.1021/acsnano.6b02247
               doi: 10.1002/stem.2296                          239. Deng  C,  Zhou  Q,  Zhang  M,  et  al.  Bioceramic  scaffolds
            230. Marędziak  M, Marycz K,  Tomaszewski  KA,  Kornicka K,   with antioxidative functions for ROS scavenging
               Henry BM. The influence of aging on the regenerative   and osteochondral regeneration.  Adv Sci (Weinh).
               potential  of human  adipose derived  mesenchymal  stem   2022;9(12):e2105727.
               cells. Stem Cells Int. 2016;2016:2152435.          doi: 10.1002/advs.202105727












            Volume 10 Issue 6 (2024)                        94                                doi: 10.36922/ijb.4472
   97   98   99   100   101   102   103   104   105   106   107