Page 97 - IJB-10-6
P. 97

International Journal of Bioprinting                           3D bioprinting techniques & hydrogels materials




            106. Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S, Kim   118. Li H, Wang J, Yang G, Pei X, Zhang X. Advances of
               K. A simple and high-resolution stereolithography-based 3D   mussel-inspired hydrogels for bone/cartilage regeneration.
               bioprinting system using visible light crosslinkable bioinks.   Chem Eng J. 2024;487:150560.
               Biofabrication. 2015;7(4):045009.                  doi: 10.1016/j.cej.2024.150560
               doi: 10.1088/1758-5090/7/4/045009
                                                               119. Lee KY, Mooney DJ. Hydrogels for tissue engineering.
            107. Anandakrishnan N, Ye H, Guo Z, et al. Fast stereolithography   Chem Rev. 2001;101(7):1869-1879.
               printing of large-scale biocompatible hydrogel models.       doi: 10.1021/cr000108x
               Adv Healthc Mater. 2021;10(10):e2002103.        120. Trica  B, Delattre C,  Gros F, et  al. Extraction and
               doi: 10.1002/adhm.202002103
                                                                  Characterization of alginate from an edible brown seaweed
            108. Walker DA, Hedrick JL, Mirkin CA. Rapid, large-volume,   (cystoseira barbata) harvested in the Romanian black sea.
               thermally controlled 3D printing using a mobile  liquid   Mar Drugs. 2019;17(7):405.
               interface. Science. 2019;366(6463):360-364.        doi: 10.3390/md17070405
               doi: 10.1126/science.aax1562
                                                               121. Ahmad Raus R, Wan Nawawi WMF, Nasaruddin
            109. Zhang AP, Qu X, Soman P, et al. Rapid fabrication   RR. Alginate and alginate composites for biomedical
               of complex 3D extracellular microenvironments by   applications. Asian J Pharm Sci. 2021;16(3):280-306.
               dynamic optical projection stereolithography.  Adv Mater.      doi: 10.1016/j.ajps.2020.10.001
               2012;24(31):4266-4270.                          122. Rastogi P, Kandasubramanian B. Review of alginate-based
               doi: 10.1002/adma.201202024
                                                                  hydrogel bioprinting for application in tissue engineering.
            110. Zhang Z, Yao S, Hu X, et al. Sacrificial synthesis of supported   Biofabrication. 2019;11(4):042001.
               ru single atoms and clusters on N-doped carbon derived      doi: 10.1088/1758-5090/ab331e
               from covalent triazine frameworks: a charge modulation   123. Chawla D, Kaur T, Joshi A, Singh N. 3D bioprinted
               approach. Adv Sci (Weinh). 2021;8(3):2001493.      alginate-gelatin based scaffolds for soft tissue engineering.
               doi: 10.1002/advs.202001493
                                                                  Int J Biol Macromol. 2020;144:560-567.
            111. Li W, Wang M, Mille LS, et al. A smartphone-enabled      doi: 10.1016/j.ijbiomac.2019.12.127
               portable digital light processing 3D printer.  Adv Mater.   124. Kulanthaivel S, Rathnam VSS, Agarwal T, et al. Gum
               2021;33(35):e2102153.                              tragacanth-alginate beads as proangiogenic-osteogenic
               doi: 10.1002/adma.202102153
                                                                  cell encapsulation systems for bone tissue engineering.
            112. Tumbleston JR, Shirvanyants D, Ermoshkin N, et al. Additive   J Mater Chem B. 2017;5(22):4177-4189.
               manufacturing. Continuous liquid interface production of      doi: 10.1039/c7tb00390k
               3D objects. Science. 2015;347(6228):1349-1352.  125. Tiwari S, Patil R, Bahadur P. Polysaccharide based scaffolds
               doi: 10.1126/science.aaa2397
                                                                  for soft tissue engineering applications.  Polymers (Basel).
            113. Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S. 3D   2018;11(1).
               printing of functional biomaterials for tissue engineering.       doi: 10.3390/polym11010001
               Curr Opin Biotechnol. 2016;40:103-112.          126. Sarker B, Rompf J, Silva R, et al. Alginate-based hydrogels
               doi: 10.1016/j.copbio.2016.03.014
                                                                  with improved adhesive properties for cell encapsulation.
            114. Wang  M,  Li  W, Mille  LS, et  al. Digital  light processing   Int J Biol Macromol. 2015;78:72-78.
               based bioprinting with composable gradients.  Adv Mater.      doi: 10.1016/j.ijbiomac.2015.03.061
               2022;34(1):e2107038.                            127. Diniz IM, Chen C, Ansari S, et al. Gingival mesenchymal
               doi: 10.1002/adma.202107038
                                                                  stem cell (GMSC) delivery system based on RGD-coupled
            115. Xing JF, Zheng ML, Duan XM. Two-photon polymerization   alginate hydrogel with antimicrobial properties: a novel
               microfabrication of hydrogels: an advanced 3D printing   treatment modality for peri-implantitis.  J Prosthodont.
               technology for  tissue  engineering  and  drug  delivery.    2016;25(2):105-115.
               Chem Soc Rev. 2015;44(15):5031-5039.               doi: 10.1111/jopr.12316
               doi: 10.1039/c5cs00278h
                                                               128. Endo K, Anada T, Yamada M, Seki M, Sasaki K, Suzuki
            116. Wang B, Engay E, Stubbe PR, et al. Stiffness control in dual   O. Enhancement of osteoblastic differentiation in alginate
               color tomographic volumetric 3D printing. Nat Commun.   gel beads with bioactive octacalcium phosphate particles.
               2022;13(1):367.                                    Biomed Mater. 2015;10(6):065019.
               doi: 10.1038/s41467-022-28013-4                    doi: 10.1088/1748-6041/10/6/065019
            117. Bernal PN, Delrot P, Loterie D, et al. Volumetric bioprinting   129. Popa EG, Gomes ME, Reis RL. Cell delivery systems
               of  complex  living-tissue  constructs  within  seconds.    using alginate–carrageenan hydrogel beads and fibers for
               Adv Mater. 2019;31(42):e1904209.                   regenerative medicine applications.  Biomacromolecules.
               doi: 10.1002/adma.201904209                        2011;12(11):3952-3961.


            Volume 10 Issue 6 (2024)                        89                                doi: 10.36922/ijb.4472
   92   93   94   95   96   97   98   99   100   101   102