Page 97 - IJB-10-6
P. 97
International Journal of Bioprinting 3D bioprinting techniques & hydrogels materials
106. Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S, Kim 118. Li H, Wang J, Yang G, Pei X, Zhang X. Advances of
K. A simple and high-resolution stereolithography-based 3D mussel-inspired hydrogels for bone/cartilage regeneration.
bioprinting system using visible light crosslinkable bioinks. Chem Eng J. 2024;487:150560.
Biofabrication. 2015;7(4):045009. doi: 10.1016/j.cej.2024.150560
doi: 10.1088/1758-5090/7/4/045009
119. Lee KY, Mooney DJ. Hydrogels for tissue engineering.
107. Anandakrishnan N, Ye H, Guo Z, et al. Fast stereolithography Chem Rev. 2001;101(7):1869-1879.
printing of large-scale biocompatible hydrogel models. doi: 10.1021/cr000108x
Adv Healthc Mater. 2021;10(10):e2002103. 120. Trica B, Delattre C, Gros F, et al. Extraction and
doi: 10.1002/adhm.202002103
Characterization of alginate from an edible brown seaweed
108. Walker DA, Hedrick JL, Mirkin CA. Rapid, large-volume, (cystoseira barbata) harvested in the Romanian black sea.
thermally controlled 3D printing using a mobile liquid Mar Drugs. 2019;17(7):405.
interface. Science. 2019;366(6463):360-364. doi: 10.3390/md17070405
doi: 10.1126/science.aax1562
121. Ahmad Raus R, Wan Nawawi WMF, Nasaruddin
109. Zhang AP, Qu X, Soman P, et al. Rapid fabrication RR. Alginate and alginate composites for biomedical
of complex 3D extracellular microenvironments by applications. Asian J Pharm Sci. 2021;16(3):280-306.
dynamic optical projection stereolithography. Adv Mater. doi: 10.1016/j.ajps.2020.10.001
2012;24(31):4266-4270. 122. Rastogi P, Kandasubramanian B. Review of alginate-based
doi: 10.1002/adma.201202024
hydrogel bioprinting for application in tissue engineering.
110. Zhang Z, Yao S, Hu X, et al. Sacrificial synthesis of supported Biofabrication. 2019;11(4):042001.
ru single atoms and clusters on N-doped carbon derived doi: 10.1088/1758-5090/ab331e
from covalent triazine frameworks: a charge modulation 123. Chawla D, Kaur T, Joshi A, Singh N. 3D bioprinted
approach. Adv Sci (Weinh). 2021;8(3):2001493. alginate-gelatin based scaffolds for soft tissue engineering.
doi: 10.1002/advs.202001493
Int J Biol Macromol. 2020;144:560-567.
111. Li W, Wang M, Mille LS, et al. A smartphone-enabled doi: 10.1016/j.ijbiomac.2019.12.127
portable digital light processing 3D printer. Adv Mater. 124. Kulanthaivel S, Rathnam VSS, Agarwal T, et al. Gum
2021;33(35):e2102153. tragacanth-alginate beads as proangiogenic-osteogenic
doi: 10.1002/adma.202102153
cell encapsulation systems for bone tissue engineering.
112. Tumbleston JR, Shirvanyants D, Ermoshkin N, et al. Additive J Mater Chem B. 2017;5(22):4177-4189.
manufacturing. Continuous liquid interface production of doi: 10.1039/c7tb00390k
3D objects. Science. 2015;347(6228):1349-1352. 125. Tiwari S, Patil R, Bahadur P. Polysaccharide based scaffolds
doi: 10.1126/science.aaa2397
for soft tissue engineering applications. Polymers (Basel).
113. Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S. 3D 2018;11(1).
printing of functional biomaterials for tissue engineering. doi: 10.3390/polym11010001
Curr Opin Biotechnol. 2016;40:103-112. 126. Sarker B, Rompf J, Silva R, et al. Alginate-based hydrogels
doi: 10.1016/j.copbio.2016.03.014
with improved adhesive properties for cell encapsulation.
114. Wang M, Li W, Mille LS, et al. Digital light processing Int J Biol Macromol. 2015;78:72-78.
based bioprinting with composable gradients. Adv Mater. doi: 10.1016/j.ijbiomac.2015.03.061
2022;34(1):e2107038. 127. Diniz IM, Chen C, Ansari S, et al. Gingival mesenchymal
doi: 10.1002/adma.202107038
stem cell (GMSC) delivery system based on RGD-coupled
115. Xing JF, Zheng ML, Duan XM. Two-photon polymerization alginate hydrogel with antimicrobial properties: a novel
microfabrication of hydrogels: an advanced 3D printing treatment modality for peri-implantitis. J Prosthodont.
technology for tissue engineering and drug delivery. 2016;25(2):105-115.
Chem Soc Rev. 2015;44(15):5031-5039. doi: 10.1111/jopr.12316
doi: 10.1039/c5cs00278h
128. Endo K, Anada T, Yamada M, Seki M, Sasaki K, Suzuki
116. Wang B, Engay E, Stubbe PR, et al. Stiffness control in dual O. Enhancement of osteoblastic differentiation in alginate
color tomographic volumetric 3D printing. Nat Commun. gel beads with bioactive octacalcium phosphate particles.
2022;13(1):367. Biomed Mater. 2015;10(6):065019.
doi: 10.1038/s41467-022-28013-4 doi: 10.1088/1748-6041/10/6/065019
117. Bernal PN, Delrot P, Loterie D, et al. Volumetric bioprinting 129. Popa EG, Gomes ME, Reis RL. Cell delivery systems
of complex living-tissue constructs within seconds. using alginate–carrageenan hydrogel beads and fibers for
Adv Mater. 2019;31(42):e1904209. regenerative medicine applications. Biomacromolecules.
doi: 10.1002/adma.201904209 2011;12(11):3952-3961.
Volume 10 Issue 6 (2024) 89 doi: 10.36922/ijb.4472

