Page 100 - IJB-10-6
P. 100
International Journal of Bioprinting 3D bioprinting techniques & hydrogels materials
175. Chen C, Zhang QW, Ye Y, Lin LG. Honokiol: a naturally 186. Zhuang P, Sun AX, An J, Chua CK, Chew SY. 3D neural
occurring lignan with pleiotropic bioactivities. tissue models: from spheroids to bioprinting. Biomaterials.
Chin J Nat Med. 2021;19(7):481-490. 2018;154:113-133.
doi: 10.1016/S1875-5364(21)60047-X doi: 10.1016/j.biomaterials.2017.10.002
176. Zhu S, Chen P, Chen Y, Li M, Chen C, Lu H. 3D-printed 187. Lee EJ, Park SJ, Kang SK, et al. Spherical bullet formation via
extracellular matrix/polyethylene glycol diacrylate hydrogel E-cadherin promotes therapeutic potency of mesenchymal
incorporating the anti-inflammatory phytomolecule stem cells derived from human umbilical cord blood for
honokiol for regeneration of osteochondral defects. myocardial infarction. Mol Ther. 2012;20(7):1424-1433.
Am J Sports Med. 2020;48(11):2808-2818. doi: 10.1038/mt.2012.58
doi: 10.1177/0363546520941842
188. Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, De
177. Liu J, Gao J, Liang Z, et al. Mesenchymal stem cells and their Boer J. Spheroid culture as a tool for creating 3D complex
microenvironment. Stem Cell Res Ther. 2022;13(1):429. tissues. Trends Biotechnol. 2013;31(2):108-115.
doi: 10.1186/s13287-022-02985-y doi: 10.1016/j.tibtech.2012.12.003
178. Shim JH, Jang KM, Hahn SK, et al. Three-dimensional 189. Zhang J, Xin W, Qin Y, et al. “All-in-one” zwitterionic
bioprinting of multilayered constructs containing human granular hydrogel bioink for stem cell spheroids production
mesenchymal stromal cells for osteochondral tissue and 3D bioprinting. Chem Eng J. 2022;430:132713.
regeneration in the rabbit knee joint. Biofabrication. doi: 10.1016/j.cej.2021.132713
2016;8(1):014102.
doi: 10.1088/1758-5090/8/1/014102 190. Kim K, Yeatts A, Dean D, Fisher JP. Stereolithographic bone
scaffold design parameters: osteogenic differentiation and
179. Gao G, Schilling AF, Hubbell K, et al. Improved properties signal expression. Tissue Eng Part B Rev. 2010;16(5):523-539.
of bone and cartilage tissue from 3D inkjet-bioprinted doi: 10.1089/ten.TEB.2010.0171
human mesenchymal stem cells by simultaneous deposition
and photocrosslinking in PEG-GelMA. Biotechnol Lett. 191. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds
2015;37(11):2349-2355. and osteogenesis. Biomaterials. 2005;26(27):5474-5491.
doi: 10.1007/s10529-015-1921-2 doi: 10.1016/j.biomaterials.2005.02.002
180. Zhang H, Huang H, Hao G, et al. 3D printing hydrogel 192. Nowicki MA, Castro NJ, Plesniak MW, Zhang LG. 3D
scaffolds with nanohydroxyapatite gradient to effectively printing of novel osteochondral scaffolds with graded
repair osteochondral defects in rats. Adv Funct Mater. microstructure. Nanotechnology. 2016;27(41):414001.
2021;31(1):2006697. doi: 10.1088/0957-4484/27/41/414001
doi: 10.1002/adfm.202006697 193. Peng Y, Zhuang Y, Liu Y, et al. Bioinspired gradient scaffolds
181. Reesink HL, Sutton RM, Shurer CR, et al. Galectin-1 and for osteochondral tissue engineering. Exploration (Beijing).
galectin-3 expression in equine mesenchymal stromal cells 2023;3(4):20210043.
(MSCs), synovial fibroblasts and chondrocytes, and the effect of doi: 10.1002/exp.20210043
inflammation on MSC motility. Stem Cell Res Ther. 2017;8(1). 194. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ,
doi: 10.1186/s13287-017-0691-2 Markwald RR. Organ printing: tissue spheroids as building
182. Loeser RF, Goldring SR, Scanzello CR, Goldring blocks. Biomaterials. 2009;30(12):2164-2174.
MB. Osteoarthritis: a disease of the joint as an organ. doi: 10.1016/j.biomaterials.2008.12.084
Arthritis Rheum. 2012;64(6):1697-1707. 195. Diloksumpan P, de Ruijter M, Castilho M, et al. Combining
doi: 10.1002/art.34453 multi-scale 3D printing technologies to engineer
183. Liu Y, Peng L, Li L, et al. 3D-bioprinted BMSC-laden reinforced hydrogel-ceramic interfaces. Biofabrication.
biomimetic multiphasic scaffolds for efficient repair of 2020;12(2):025014.
osteochondral defects in an osteoarthritic rat model. doi: 10.1088/1758-5090/ab69d9
Biomaterials. 2021;279:121216. 196. Zhai X, Ruan C, Ma Y, et al. 3D-bioprinted osteoblast-
doi: 10.1016/j.biomaterials.2021.121216 laden nanocomposite hydrogel constructs with induced
184. Daly AC, Pitacco P, Nulty J, Cunniffe GM, Kelly DJ. 3D printed microenvironments promote cell viability, differentiation,
microchannel networks to direct vascularisation during and osteogenesis both in vitro and in vivo. Adv Sci (Weinh).
endochondral bone repair. Biomaterials. 2018;162:34-46. 2018;5(3):1700550.
doi: 10.1016/j.biomaterials.2018.01.057 doi: 10.1002/advs.201700550
185. Galle J, Hoffmann M, Aust G. From single cells to tissue 197. Park JY, Choi JC, Shim JH, et al. A comparative study on
architecture-a bottom-up approach to modelling the spatio- collagen type I and hyaluronic acid dependent cell behavior
temporal organisation of complex multi-cellular systems. for osteochondral tissue bioprinting. Biofabrication.
J Mathematical Biology. 2009;58(1-2):261-283. 2014;6(3):035004.
doi: 10.1007/s00285-008-0172-4 doi: 10.1088/1758-5082/6/3/035004
Volume 10 Issue 6 (2024) 92 doi: 10.36922/ijb.4472

