Page 100 - IJB-10-6
P. 100

International Journal of Bioprinting                           3D bioprinting techniques & hydrogels materials




            175. Chen C, Zhang QW, Ye Y, Lin LG. Honokiol: a naturally   186. Zhuang P, Sun AX, An J, Chua CK, Chew SY. 3D neural
               occurring  lignan  with  pleiotropic  bioactivities.   tissue models: from spheroids to bioprinting. Biomaterials.
               Chin J Nat Med. 2021;19(7):481-490.                2018;154:113-133.
               doi: 10.1016/S1875-5364(21)60047-X                 doi: 10.1016/j.biomaterials.2017.10.002
            176. Zhu S, Chen P, Chen Y, Li M, Chen C, Lu H. 3D-printed   187. Lee EJ, Park SJ, Kang SK, et al. Spherical bullet formation via
               extracellular matrix/polyethylene glycol diacrylate hydrogel   E-cadherin promotes therapeutic potency of mesenchymal
               incorporating  the  anti-inflammatory  phytomolecule  stem cells derived from human umbilical cord blood for
               honokiol for regeneration of osteochondral defects.    myocardial infarction. Mol Ther. 2012;20(7):1424-1433.
               Am J Sports Med. 2020;48(11):2808-2818.            doi:  10.1038/mt.2012.58
               doi: 10.1177/0363546520941842
                                                               188. Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, De
            177. Liu J, Gao J, Liang Z, et al. Mesenchymal stem cells and their   Boer J. Spheroid culture as a tool for creating 3D complex
               microenvironment. Stem Cell Res Ther. 2022;13(1):429.  tissues. Trends Biotechnol. 2013;31(2):108-115.
               doi: 10.1186/s13287-022-02985-y                    doi: 10.1016/j.tibtech.2012.12.003
            178. Shim JH, Jang KM, Hahn SK, et al. Three-dimensional   189. Zhang J, Xin W, Qin Y, et al. “All-in-one” zwitterionic
               bioprinting of multilayered constructs containing human   granular hydrogel bioink for stem cell spheroids production
               mesenchymal stromal cells for osteochondral tissue   and 3D bioprinting. Chem Eng J. 2022;430:132713.
               regeneration in the rabbit knee joint.  Biofabrication.      doi: 10.1016/j.cej.2021.132713
               2016;8(1):014102.
               doi: 10.1088/1758-5090/8/1/014102               190. Kim K, Yeatts A, Dean D, Fisher JP. Stereolithographic bone
                                                                  scaffold  design  parameters:  osteogenic  differentiation  and
            179. Gao G, Schilling AF, Hubbell K, et al. Improved properties   signal expression. Tissue Eng Part B Rev. 2010;16(5):523-539.
               of bone and cartilage tissue from 3D inkjet-bioprinted      doi: 10.1089/ten.TEB.2010.0171
               human mesenchymal stem cells by simultaneous deposition
               and photocrosslinking in PEG-GelMA.  Biotechnol Lett.   191. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds
               2015;37(11):2349-2355.                             and osteogenesis. Biomaterials. 2005;26(27):5474-5491.
               doi: 10.1007/s10529-015-1921-2                     doi: 10.1016/j.biomaterials.2005.02.002
            180. Zhang H, Huang H, Hao G, et al. 3D printing hydrogel   192. Nowicki  MA,  Castro  NJ,  Plesniak  MW,  Zhang  LG.  3D
               scaffolds with nanohydroxyapatite gradient to effectively   printing of novel osteochondral scaffolds with graded
               repair osteochondral defects in rats.  Adv Funct Mater.   microstructure. Nanotechnology. 2016;27(41):414001.
               2021;31(1):2006697.                                doi: 10.1088/0957-4484/27/41/414001
               doi: 10.1002/adfm.202006697                     193. Peng Y, Zhuang Y, Liu Y, et al. Bioinspired gradient scaffolds
            181.  Reesink HL, Sutton RM, Shurer CR, et al. Galectin-1 and   for osteochondral tissue engineering. Exploration (Beijing).
               galectin-3 expression in equine mesenchymal stromal cells   2023;3(4):20210043.
               (MSCs), synovial fibroblasts and chondrocytes, and the effect of      doi: 10.1002/exp.20210043
               inflammation on MSC motility. Stem Cell Res Ther. 2017;8(1).  194. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ,
               doi: 10.1186/s13287-017-0691-2                     Markwald RR. Organ printing: tissue spheroids as building
            182. Loeser  RF,  Goldring  SR,  Scanzello CR,  Goldring   blocks. Biomaterials. 2009;30(12):2164-2174.
               MB. Osteoarthritis: a disease of the joint as an organ.       doi: 10.1016/j.biomaterials.2008.12.084
               Arthritis Rheum. 2012;64(6):1697-1707.          195. Diloksumpan P, de Ruijter M, Castilho M, et al. Combining
               doi: 10.1002/art.34453                             multi-scale 3D printing technologies to engineer
            183. Liu Y, Peng L, Li L, et al. 3D-bioprinted BMSC-laden   reinforced hydrogel-ceramic interfaces.  Biofabrication.
               biomimetic multiphasic scaffolds for efficient repair of   2020;12(2):025014.
               osteochondral  defects  in  an osteoarthritic  rat  model.      doi: 10.1088/1758-5090/ab69d9
               Biomaterials. 2021;279:121216.                  196. Zhai X, Ruan C, Ma Y, et al. 3D-bioprinted osteoblast-
               doi: 10.1016/j.biomaterials.2021.121216            laden nanocomposite hydrogel constructs with induced
            184. Daly AC, Pitacco P, Nulty J, Cunniffe GM, Kelly DJ. 3D printed   microenvironments promote cell viability, differentiation,
               microchannel networks to direct vascularisation during   and osteogenesis both in vitro and in vivo. Adv Sci (Weinh).
               endochondral bone repair. Biomaterials. 2018;162:34-46.  2018;5(3):1700550.
               doi: 10.1016/j.biomaterials.2018.01.057            doi: 10.1002/advs.201700550
            185. Galle J, Hoffmann M, Aust G. From single cells to tissue   197. Park JY, Choi JC, Shim JH, et al. A comparative study on
               architecture-a bottom-up approach to modelling the spatio-  collagen type I and hyaluronic acid dependent cell behavior
               temporal  organisation  of  complex  multi-cellular  systems.    for osteochondral tissue bioprinting.  Biofabrication.
               J Mathematical Biology. 2009;58(1-2):261-283.      2014;6(3):035004.
               doi: 10.1007/s00285-008-0172-4                     doi: 10.1088/1758-5082/6/3/035004


            Volume 10 Issue 6 (2024)                        92                                doi: 10.36922/ijb.4472
   95   96   97   98   99   100   101   102   103   104   105