Page 99 - IJB-10-6
P. 99
International Journal of Bioprinting 3D bioprinting techniques & hydrogels materials
153. Zhou M, Wei W, Chen X, Xu X, Zhang X, Zhang X. pH doi: 10.1002/advs.201900867
and redox dual responsive carrier-free anticancer drug 164. Dong L, Han Z, Li X. Tannic acid-mediated multifunctional
nanoparticles for targeted delivery and synergistic therapy. 3D printed composite hydrogel for osteochondral
Nanomedicine. 2019;20:102008. regeneration. Int J Bioprint. 2022;8(3):587.
doi: 10.1016/j.nano.2019.04.011
doi: 10.18063/ijb.v8i3.587
154. Palmese LL, Thapa RK, Sullivan MO, Kiick KL. Hybrid
hydrogels for biomedical applications. Curr Opin Chem Eng. 165. Antich C, de Vicente J, Jiménez G, et al. Bio-inspired
2019;24:143-157. hydrogel composed of hyaluronic acid and alginate as a
doi: 10.1016/j.coche.2019.02.010 potential bioink for 3D bioprinting of articular cartilage
engineering constructs. Acta Biomater. 2020;106:
155. Wang H, Xu Y, Wang P, et al. Cell-mediated injectable 114-123.
blend hydrogel-BCP ceramic scaffold for in situ condylar doi: 10.1016/j.actbio.2020.01.046
osteochondral repair. Acta Biomater. 2021;123:364-378.
doi: 10.1016/j.actbio.2020.12.056 166. Agostinacchio F, Mu X, Dirè S, Motta A, Kaplan DL. In situ
3D printing: opportunities with silk inks. Trends Biotechnol.
156. Seol YJ, Park JY, Jeong W, Kim TH, Kim SY, Cho DW. 2021;39(7):719-730.
Development of hybrid scaffolds using ceramic and hydrogel doi: 10.1016/j.tibtech.2020.11.003
for articular cartilage tissue regeneration. J Biomed Mater
Res A. 2015;103(4):1404-1413. 167. Ma K, Zhao T, Yang L, et al. Application of robotic-assisted
doi: 10.1002/jbm.a.35276 in situ 3D printing in cartilage regeneration with HAMA
hydrogel: an in vivo study. J Adv Res. 2020;23:123-132.
157. Li J, Zhi W, Xu T, et al. Ectopic osteogenesis and angiogenesis doi: 10.1016/j.jare.2020.01.010
regulated by porous architecture of hydroxyapatite
scaffolds with similar interconnecting structure in vivo. 168. Motloung MP, Mofokeng TG, Ray SS. Viscoelastic,
Regen Biomater. 2016;3(5):285-297. thermal, and mechanical properties of melt-processed poly
doi: 10.1093/rb/rbw031 (ε-Caprolactone) (PCL)/hydroxyapatite (HAP) composites.
Materials (Basel). 2021;15(1).
158. You F, Chen X, Cooper DML, Chang T, Eames BF. doi: 10.3390/ma15010104
Homogeneous hydroxyapatite/alginate composite hydrogel
promotes calcified cartilage matrix deposition with 169. Rahmani S, Maroufkhani M, Mohammadzadeh-Komuleh
potential for three-dimensional bioprinting. Biofabrication. S, Khoubi-Arani Z. Chapter 7 – polymer nanocomposites
2018;11(1):015015. for biomedical applications. In: Barhoum A, Jeevanandam
doi: 10.1088/1758-5090/aaf44a J, Danquah MK, eds. Fundamentals of Bionanomaterials.
Elsevier; 2022:175-215.
159. Wang Y, Wu S, Kuss MA, Streubel PN, Duan B. Effects doi: 10.1016/B978-0-12-824147-9.00007-8
of hydroxyapatite and hypoxia on chondrogenesis and
hypertrophy in 3D bioprinted ADMSC laden constructs. 170. Chen H, Gonnella G, Huang J, Di-Silvio L. Fabrication of
ACS Biomater Sci Eng. 2017;3(5):826-835. 3D bioprinted bi-phasic scaffold for bone-cartilage interface
doi: 10.1021/acsbiomaterials.7b00101 regeneration. Biomimetics (Basel). 2023;8(1):87.
doi: 10.3390/biomimetics8010087
160. Kosik-Kozioł A, Costantini M, Mróz A, et al. 3D bioprinted
hydrogel model incorporating β-tricalcium phosphate 171. Wang S, Gu R, Wang F, et al. 3D-printed PCL/Zn scaffolds
for calcified cartilage tissue engineering. Biofabrication. for bone regeneration with a dose-dependent effect on
2019;11(3):035016. osteogenesis and osteoclastogenesis. Mater Today Bio.
doi: 10.1088/1758-5090/ab15cb 2022;13:100202.
doi: 10.1016/j.mtbio.2021.100202
161. Wang W, Shen J, Meng Y, et al. Magnesium cationic cue
enriched interfacial tissue microenvironment nurtures 172. Tabatabaei F, Gelin A, Rasoulianboroujeni M, Tayebi
the osseointegration of gamma-irradiated allograft bone. L. Coating of 3D printed PCL/TCP scaffolds using
Bioact Mater. 2022;10:32-47. homogenized-fibrillated collagen. Colloids Surf B
doi: 10.1016/j.bioactmat.2021.08.027 Biointerfaces. 2022;217:112670.
doi: 10.1016/j.colsurfb.2022.112670
162. Chen Y, Chen Y, Xiong X, et al. Hybridizing gellan/
alginate and thixotropic magnesium phosphate-based 173. Thakkar S, Ghebes CA, Ahmed M, et al. Mesenchymal stromal
hydrogel scaffolds for enhanced osteochondral repair. cell-derived extracellular matrix influences gene expression
Mater Today Bio. 2022;14:100261. of chondrocytes. Biofabrication. 2013;5(2):025003.
doi: 10.1016/j.mtbio.2022.100261 doi: 10.1088/1758-5082/5/2/025003
163. Gao F, Xu Z, Liang Q, et al. Osteochondral regeneration with 174. Li C, Zhang W, Nie Y, et al. Integrated and bifunctional
3D-printed biodegradable high-strength supramolecular bilayer 3D printing scaffold for osteochondral defect repair.
polymer reinforced-gelatin hydrogel scaffolds. Adv Sci Adv Funct Mater. 2023;33(20):2214158.
(Weinh). 2019;6(15):1900867. doi: 10.1002/adfm.202214158
Volume 10 Issue 6 (2024) 91 doi: 10.36922/ijb.4472

