Page 99 - IJB-10-6
P. 99

International Journal of Bioprinting                           3D bioprinting techniques & hydrogels materials




            153. Zhou M, Wei W, Chen X, Xu X, Zhang X, Zhang X. pH      doi: 10.1002/advs.201900867
               and redox dual responsive carrier-free anticancer drug   164. Dong L, Han Z, Li X. Tannic acid-mediated multifunctional
               nanoparticles for targeted delivery and synergistic therapy.   3D printed composite hydrogel for osteochondral
               Nanomedicine. 2019;20:102008.                      regeneration. Int J Bioprint. 2022;8(3):587.
               doi: 10.1016/j.nano.2019.04.011
                                                                  doi: 10.18063/ijb.v8i3.587
            154. Palmese LL, Thapa RK, Sullivan MO, Kiick KL. Hybrid
               hydrogels for biomedical applications. Curr Opin Chem Eng.   165. Antich  C, de  Vicente J,  Jiménez  G, et al. Bio-inspired
               2019;24:143-157.                                   hydrogel composed of hyaluronic acid and alginate as a
               doi: 10.1016/j.coche.2019.02.010                   potential bioink for 3D bioprinting of articular cartilage
                                                                  engineering  constructs.  Acta  Biomater.  2020;106:
            155. Wang H, Xu Y, Wang P, et al. Cell-mediated injectable   114-123.
               blend hydrogel-BCP ceramic scaffold for  in situ condylar      doi: 10.1016/j.actbio.2020.01.046
               osteochondral repair. Acta Biomater. 2021;123:364-378.
               doi: 10.1016/j.actbio.2020.12.056               166. Agostinacchio F, Mu X, Dirè S, Motta A, Kaplan DL. In situ
                                                                  3D printing: opportunities with silk inks. Trends Biotechnol.
            156. Seol  YJ,  Park  JY,  Jeong  W,  Kim  TH,  Kim  SY,  Cho  DW.   2021;39(7):719-730.
               Development of hybrid scaffolds using ceramic and hydrogel      doi: 10.1016/j.tibtech.2020.11.003
               for articular cartilage tissue regeneration.  J Biomed Mater
               Res A. 2015;103(4):1404-1413.                   167. Ma K, Zhao T, Yang L, et al. Application of robotic-assisted
               doi: 10.1002/jbm.a.35276                           in situ 3D printing in cartilage regeneration with  HAMA
                                                                  hydrogel: an in vivo study. J Adv Res. 2020;23:123-132.
            157. Li J, Zhi W, Xu T, et al. Ectopic osteogenesis and angiogenesis      doi: 10.1016/j.jare.2020.01.010
               regulated by porous architecture of hydroxyapatite
               scaffolds with similar interconnecting structure  in vivo.    168. Motloung MP, Mofokeng TG, Ray SS. Viscoelastic,
               Regen Biomater. 2016;3(5):285-297.                 thermal, and mechanical properties of melt-processed poly
               doi: 10.1093/rb/rbw031                             (ε-Caprolactone) (PCL)/hydroxyapatite (HAP) composites.
                                                                  Materials (Basel). 2021;15(1).
            158. You F, Chen X, Cooper DML, Chang T, Eames BF.      doi: 10.3390/ma15010104
               Homogeneous hydroxyapatite/alginate composite hydrogel
               promotes calcified cartilage matrix deposition with   169. Rahmani S, Maroufkhani M, Mohammadzadeh-Komuleh
               potential for three-dimensional bioprinting. Biofabrication.   S, Khoubi-Arani Z. Chapter 7 – polymer nanocomposites
               2018;11(1):015015.                                 for biomedical applications. In: Barhoum A, Jeevanandam
               doi: 10.1088/1758-5090/aaf44a                      J, Danquah MK, eds.  Fundamentals of Bionanomaterials.
                                                                  Elsevier; 2022:175-215.
            159. Wang Y, Wu S, Kuss MA, Streubel PN, Duan B. Effects      doi: 10.1016/B978-0-12-824147-9.00007-8
               of  hydroxyapatite  and  hypoxia  on  chondrogenesis  and
               hypertrophy in  3D  bioprinted ADMSC laden  constructs.   170. Chen H, Gonnella G, Huang J, Di-Silvio L. Fabrication of
               ACS Biomater Sci Eng. 2017;3(5):826-835.           3D bioprinted bi-phasic scaffold for bone-cartilage interface
               doi: 10.1021/acsbiomaterials.7b00101               regeneration. Biomimetics (Basel). 2023;8(1):87.
                                                                  doi: 10.3390/biomimetics8010087
            160. Kosik-Kozioł A, Costantini M, Mróz A, et al. 3D bioprinted
               hydrogel model incorporating β-tricalcium phosphate   171. Wang S, Gu R, Wang F, et al. 3D-printed PCL/Zn scaffolds
               for calcified cartilage tissue engineering.  Biofabrication.   for bone regeneration with a dose-dependent effect on
               2019;11(3):035016.                                 osteogenesis  and  osteoclastogenesis.  Mater Today Bio.
               doi: 10.1088/1758-5090/ab15cb                      2022;13:100202.
                                                                  doi: 10.1016/j.mtbio.2021.100202
            161. Wang W, Shen J, Meng Y, et al. Magnesium cationic cue
               enriched interfacial tissue microenvironment nurtures   172. Tabatabaei  F,  Gelin  A, Rasoulianboroujeni  M,  Tayebi
               the  osseointegration  of  gamma-irradiated  allograft  bone.    L. Coating of 3D printed PCL/TCP scaffolds using
               Bioact Mater. 2022;10:32-47.                       homogenized-fibrillated  collagen.  Colloids  Surf  B
               doi: 10.1016/j.bioactmat.2021.08.027               Biointerfaces. 2022;217:112670.
                                                                  doi: 10.1016/j.colsurfb.2022.112670
            162. Chen Y, Chen Y, Xiong X, et al. Hybridizing gellan/
               alginate and thixotropic magnesium phosphate-based   173. Thakkar S, Ghebes CA, Ahmed M, et al. Mesenchymal stromal
               hydrogel scaffolds for enhanced osteochondral repair.    cell-derived extracellular matrix influences gene expression
               Mater Today Bio. 2022;14:100261.                   of chondrocytes. Biofabrication. 2013;5(2):025003.
               doi: 10.1016/j.mtbio.2022.100261                   doi: 10.1088/1758-5082/5/2/025003
            163. Gao F, Xu Z, Liang Q, et al. Osteochondral regeneration with   174. Li C, Zhang W, Nie Y, et al. Integrated and bifunctional
               3D-printed biodegradable high-strength supramolecular   bilayer 3D printing scaffold for osteochondral defect repair.
               polymer reinforced-gelatin hydrogel scaffolds.  Adv Sci   Adv Funct Mater. 2023;33(20):2214158.
               (Weinh). 2019;6(15):1900867.                       doi: 10.1002/adfm.202214158


            Volume 10 Issue 6 (2024)                        91                                doi: 10.36922/ijb.4472
   94   95   96   97   98   99   100   101   102   103   104