Page 94 - IJB-10-6
P. 94

International Journal of Bioprinting                           3D bioprinting techniques & hydrogels materials




               doi: 10.1016/j.actbio.2017.01.036               45.  Geckil H, Xu F, Zhang X, Moon S, Demirci U. Engineering
                                                                  hydrogels as extracellular matrix mimics.  Nanomedicine
            33.  Huang BJ, Hu JC, Athanasiou KA. Cell-based tissue
               engineering strategies used in the clinical repair of articular   (Lond). 2010;5(3):469-484.
               cartilage. Biomaterials. 2016;98:1-22.             doi: 10.2217/nnm.10.12
               doi: 10.1016/j.biomaterials.2016.04.018         46.  Castilho M, Mouser V, Chen M, Malda J, Ito K. Bi-layered
            34.  Yang Z, Yi P, Liu Z, et al. Stem cell-laden hydrogel-based   micro-fibre reinforced hydrogels for articular cartilage
               3D bioprinting for bone and cartilage tissue engineering.    regeneration. Acta Biomater. 2019;95:297-306.
               Front Bioeng Biotechnol. 2022;10:865770.           doi: 10.1016/j.actbio.2019.06.030
               doi: 10.3389/fbioe.2022.865770                  47.  Liang Y, He J, Guo B. Functional hydrogels as wound
            35.  Daly AC, Freeman FE, Gonzalez-Fernandez T, Critchley   dressing  to  enhance  wound  healing.  ACS Nano.
               SE, Nulty J, Kelly DJ. 3D bioprinting for cartilage and   2021;15(8):12687-12722.
               osteochondral tissue engineering.  Adv Healthc Mater.      doi: 10.1021/acsnano.1c04206
               2017;6(22):1700298.                             48.  Olov N, Bagheri-Khoulenjani S, Mirzadeh H. Injectable
               doi: 10.1002/adhm.201700298                        hydrogels for bone and cartilage tissue engineering: a review.
            36.  Zhang  H,  Wang  M,  Wu  R,  et  al.  From  materials  to   Prog Biomater. 2022;11(2):113-135.
               clinical use: advances in 3D-printed scaffolds for      doi: 10.1007/s40204-022-00185-8
               cartilage tissue engineering.  Phys Chem Chem Phys.   49.  Askari M, Afzali Naniz M, Kouhi M, Saberi A, Zolfagharian
               2023;25(36):24244-24263.                           A, Bodaghi M. Recent progress in extrusion 3D bioprinting
               doi: 10.1039/d3cp00921a                            of hydrogel biomaterials for tissue regeneration: a
            37.  Huey DJ, Hu JC, Athanasiou KA. Unlike bone,      comprehensive review with focus on advanced fabrication
               cartilage  regeneration  remains  elusive.  Science.   techniques. Biomater Sci. 2021;9(3):535-573.
               2012;338(6109):917-921.                            doi: 10.1039/d0bm00973c
               doi: 10.1126/science.1222454                    50.  Elkhoury K, Morsink M, Sanchez-Gonzalez L, Kahn C,
            38.  Mouser VHM, Levato R, Bonassar LJ, et al. Three-dimensional   Tamayol A, Arab-Tehrany E. Biofabrication of natural
               bioprinting and its potential in the field of articular cartilage   hydrogels for cardiac, neural, and bone tissue engineering
               regeneration. Cartilage. 2017;8(4):327-340.        applications. Bioact Mater. 2021;6(11):3904-3923.
               doi: 10.1177/1947603516665445                      doi: 10.1016/j.bioactmat.2021.03.040
            39.  Schon BS, Hooper GJ, Woodfield TB. Modular tissue   51.  Singh YP, Moses JC, Bhardwaj N, Mandal BB. Injectable
               assembly strategies for biofabrication of engineered   hydrogels:  a  new  paradigm for  osteochondral  tissue
               cartilage. Ann Biomed Eng. 2017;45(1):100-114.     engineering. J Mater Chem B. 2018;6(35):5499-5529.
               doi: 10.1007/s10439-016-1609-3                     doi: 10.1039/c8tb01430b
            40.  Jiang G, Li S, Yu K, et al. A 3D-printed PRP-GelMA   52.  Lin X, Zhang L, Duan B. Polyphenol-mediated chitin
               hydrogel promotes osteochondral regeneration through M2   self-assembly for constructing a fully naturally resourced
               macrophage polarization in a rabbit model. Acta Biomater.   hydrogel with high strength and toughness.  Mater Horiz.
               2021;128:150-162.                                  2021;8(9):2503-2512.
               doi: 10.1016/j.actbio.2021.04.010                  doi: 10.1039/d1mh00878a
            41.  Ege D, Hasirci V. Is 3D printing promising for   53.  Qin XH, Wang X, Rottmar M, Nelson BJ, Maniura-Weber
               osteochondral  tissue  regeneration?  ACS Appl Bio Mater.   K. Near-infrared light-sensitive polyvinyl alcohol hydrogel
               2023;6(4):1431-1444.                               photoresist for spatiotemporal control of cell-instructive 3D
               doi: 10.1021/acsabm.3c00093                        microenvironments. Adv Mater. 2018;30(10):1705564.
                                                                  doi: 10.1002/adma.201705564
            42.  Visser  J, Melchels FP, Jeon JE,  et al.  Reinforcement of
               hydrogels using three-dimensionally printed microfibres.   54.  Huang Q, Zou Y, Arno MC, et al. Hydrogel scaffolds for
               Nat Commun. 2015;6:6933.                           differentiation of adipose-derived stem cells. Chem Soc Rev.
               doi: 10.1038/ncomms7933                            2017;46(20):6255-6275.
                                                                  doi: 10.1039/c6cs00052e
            43.  Baur E, Hirsch M, Amstad E. Porous 3D printable hydrogels.
               Adv Mater Technol. 2023;8(9):2201763.           55.  Beninatto R, Barbera C, De Lucchi O, et al. Photocrosslinked
               doi: 10.1002/admt.202201763                        hydrogels  from  coumarin  derivatives  of  hyaluronic  acid
                                                                  for tissue engineering applications. Mater Sci Eng C Mater
            44.  Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A,
               Annabi N, Khademhosseini A. Synthesis, properties, and   Biol Appl. 2019;96:625-634.
               biomedical applications of gelatin methacryloyl (GelMA)      doi: 10.1016/j.msec.2018.11.052
               hydrogels. Biomaterials. 2015;73:254-271.       56.  Rosenquist J, Folkesson M, Höglund L, Pupkaite J, Hilborn J,
               doi: 10.1016/j.biomaterials.2015.08.045            Samanta A. An injectable, shape-retaining collagen hydrogel


            Volume 10 Issue 6 (2024)                        86                                doi: 10.36922/ijb.4472
   89   90   91   92   93   94   95   96   97   98   99