Page 95 - IJB-10-6
P. 95
International Journal of Bioprinting 3D bioprinting techniques & hydrogels materials
cross-linked using thiol-maleimide click chemistry for 69. Ozbolat IT, Hospodiuk M. Current advances and future
sealing corneal perforations. ACS Appl Mater Interfaces. perspectives in extrusion-based bioprinting. Biomaterials.
2023;15(29):34407-34418. 2016;76:321-343.
doi: 10.1021/acsami.3c03963 doi: 10.1016/j.biomaterials.2015.10.076
57. Wang Y, Wang J, Ji Z, et al. Application of bioprinting in 70. Pati F, Jang J, Ha DH, et al. Printing three-dimensional tissue
ophthalmology. Int J Bioprint. 2022;8(2):552. analogues with decellularized extracellular matrix bioink.
doi: 10.18063/ijb.v8i2.552 Nat Commun. 2014;5:3935.
58. Kelly BE, Bhattacharya I, Heidari H, Shusteff M, doi: 10.1038/ncomms4935
Spadaccini CM, Taylor HK. Volumetric additive 71. Mironov V, Trusk T, Kasyanov V, Little S, Swaja R, Markwald
manufacturing via tomographic reconstruction. Science. R. Biofabrication: a 21st century manufacturing paradigm.
2019;363(6431):1075-1079. Biofabrication. 2009;1(2):022001.
doi: 10.1126/science.aau7114 doi: 10.1088/1758-5082/1/2/022001
59. He W, Deng J, Ma B, et al. Recent advancements of bioinks 72. Liu W, Heinrich MA, Zhou Y, et al. Extrusion bioprinting
for 3D bioprinting of human tissues and organs. ACS Appl of shear-thinning gelatin methacryloyl bioinks. Adv Healthc
Bio Mater. 2024;7(1):17-43. Mater. 2017;6(12):1601451.
doi: 10.1021/acsabm.3c00806 doi: 10.1002/adhm.201601451
60. Li X, Liu B, Pei B, et al. Inkjet bioprinting of biomaterials. 73. Zandi N, Sani ES, Mostafavi E, et al. Nanoengineered
Chem Rev. 2020;120(19):10793-10833. shear-thinning and bioprintable hydrogel as a versatile
doi: 10.1021/acs.chemrev.0c00008 platform for biomedical applications. Biomaterials. 2021;
61. Heinrich MA, Liu W, Jimenez A, et al. 3D bioprinting: 267:120476.
from benches to translational applications. Small. doi: 10.1016/j.biomaterials.2020.120476
2019;15(23):e1805510. 74. Loebel C, Rodell CB, Chen MH, Burdick JA. Shear-thinning
doi: 10.1002/smll.201805510 and self-healing hydrogels as injectable therapeutics and for
62. Gudapati H, Dey M, Ozbolat I. A comprehensive review 3D-printing. Nat Protoc. 2017;12(8):1521-1541.
on droplet-based bioprinting: past, present and future. doi: 10.1038/nprot.2017.053
Biomaterials. 2016;102:20-42. 75. Xin S, Deo KA, Dai J, et al. Generalizing hydrogel
doi: 10.1016/j.biomaterials.2016.06.012 microparticles into a new class of bioinks for extrusion
63. Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin bioprinting. Sci Adv. 2021;7(42):eabk3087.
CT. Progress in 3D bioprinting technology for tissue/organ doi: 10.1126/sciadv.abk3087
regenerative engineering. Biomaterials. 2020;226:119536. 76. Liu W, Zhang YS, Heinrich MA, et al. Rapid continuous
doi: 10.1016/j.biomaterials.2019.119536 multimaterial extrusion bioprinting. Adv Mater. 2017;29(3):.
64. Saunders RE, Gough JE, Derby B. Delivery of human doi: 10.1002/adma.201604630
fibroblast cells by piezoelectric drop-on-demand inkjet 77. Kyle S, Jessop ZM, Al-Sabah A, Whitaker IS. ‘Printability’
printing. Biomaterials. 2008;29(2):193-203. of candidate biomaterials for extrusion based 3D
doi: 10.1016/j.biomaterials.2007.09.032 printing: state-of-the-art. Adv Healthc Mater. 2017;6(16):
65. Zandrini T, Florczak S, Levato R, Ovsianikov A. Breaking the 1604630.
resolution limits of 3D bioprinting: future opportunities and doi: 10.1002/adhm.201700264
present challenges. Trends Biotechnol. 2023;41(5):604-614. 78. Kosorn W, Sakulsumbat M, Uppanan P, et al. PCL/PHBV
doi: 10.1016/j.tibtech.2022.10.009 blended three dimensional scaffolds fabricated by fused
66. Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting deposition modeling and responses of chondrocytes
for engineering complex tissues. Biotechnol Adv. to the scaffolds. J Biomed Mater Res B Appl Biomater.
2016;34(4):422-434. 2017;105(5):1141-1150.
doi: 10.1016/j.biotechadv.2015.12.011 doi: 10.1002/jbm.b.33658
67. Lee JM, Sing SL, Zhou M, Yeong WY. 3D bioprinting 79. Winarso R, Anggoro PW, Ismail R, Jamari J, Bayuseno
processes: a perspective on classification and terminology. AP. Application of fused deposition modeling (FDM) on
Int J Bioprint. 2018;4(2):151. bone scaffold manufacturing process: a review. Heliyon.
doi: 10.18063/IJB.v4i2.151 2022;8(11):e11701.
doi: 10.1016/j.heliyon.2022.e11701
68. Lawlor KT, Vanslambrouck JM, Higgins JW, et al.
Cellular extrusion bioprinting improves kidney 80. Turnbull G, Clarke J, Picard F, et al. 3D bioactive composite
organoid reproducibility and conformation. Nat Mater. scaffolds for bone tissue engineering. Bioact Mater.
2021;20(2):260-271. 2018;3(3):278-314.
doi: 10.1038/s41563-020-00853-9 doi: 10.1016/j.bioactmat.2017.10.001
Volume 10 Issue 6 (2024) 87 doi: 10.36922/ijb.4472

