Page 96 - IJB-10-6
P. 96

International Journal of Bioprinting                           3D bioprinting techniques & hydrogels materials




            81.  Park MJ, Bae J, Ju YK. Structural behavior of a composite   via  melt  electrospinning  writing.  Biofabrication.
               curtain wall fabricated by the fused deposition modeling 3D   2015;7(3):035002.
               printing method. Polymers (Basel). 2022;14(7):1431.     doi: 10.1088/1758-5090/7/3/035002
               doi: 10.3390/polym14071431
                                                               94.  Li K, Wang C, Sun L, et al. Laser-assisted electrohydrodynamic
            82.  Junqueira LA, Tabriz AG, Raposo FJ, et al. Coupling of fused   jet printing of hierarchical nanostructure. Appl Therm Eng.
               deposition modeling and inkjet printing to produce drug   2024;253:123659.
               loaded 3D printed tablets. Pharmaceutics. 2022;14(1).     doi: 10.1016/j.applthermaleng.2024.123659
               doi: 10.3390/pharmaceutics14010159
                                                               95.  Huang J, Qin Q, Wang J. A review of stereolithography:
            83.  Guillotin B, Souquet A, Catros S, et al. Laser assisted   processes and systems. Processes. 2020;8(9):1138.
               bioprinting of engineered tissue with high cell      doi: 10.3390/pr8091138
               density and microscale organization.  Biomaterials.
               2010;31(28):7250-7256.                          96.  Jana S, Lerman A. Bioprinting a cardiac valve.  Biotechnol
               doi: 10.1016/j.biomaterials.2010.05.055            Adv. 2015;33(8):1503-1521.
                                                                  doi: 10.1016/j.biotechadv.2015.07.006
            84.  Mézel C, Souquet A, Hallo L, Guillemot F. Bioprinting
               by laser-induced forward transfer for tissue engineering   97.  Hinczewski C, Corbel S, Chartier T. Ceramic suspensions
               applications: jet formation modeling.  Biofabrication.   suitable  for  stereolithography.  J Eur Ceram Soc.
               2010;2(1):014103.                                  1998;18(6):583-590.
               doi: 10.1088/1758-5082/2/1/014103                  doi: 10.1016/S0955-2219(97)00186-6
            85.  Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W,   98.  Gruene M, Deiwick A, Koch L, et al. Laser printing of stem
               Xing M. 3D bioprinting for biomedical devices and tissue   cells for biofabrication of scaffold-free autologous grafts.
               engineering: a review of recent trends and advances.    Tissue Eng Part C Methods. 2011;17(1):79-87.
               Bioact Mater. 2018;3(2):144-156.                   doi: 10.1089/ten.TEC.2010.0359
               doi: 10.1016/j.bioactmat.2017.11.008            99.  Ceballos-González CF, Bolívar-Monsalve EJ, Quevedo-
            86.  Dou C, Perez V, Qu J, Tsin A, Xu B, Li J. A state-of-the-art   Moreno DA, et al. High-throughput and continuous chaotic
               review of laser-assisted bioprinting and its future research   bioprinting of spatially controlled bacterial microcosms.
               trends. Chem Bio Eng Rev. 2021;8(5):517-534.       ACS Biomater Sci Eng. 2021;7(6):2408-2419.
               doi: 10.1002/cben.202000037                        doi: 10.1021/acsbiomaterials.0c01646
            87.  Cheptsov VS, Tsypina SI, Minaev NV, Yusupov VI, Chichkov   100. Han Y, Jia B, Lian M, et al. High-precision, gelatin-
               BN. New microorganism isolation techniques with emphasis   based, hybrid, bilayer scaffolds using melt electro-
               on laser printing. Int J Bioprint. 2019;5(1):165.  writing to repair cartilage injury.  Bioact Mater.  2021;6(7):
               doi: 10.18063/ijb.v5i1.165                         2173-2186.
                                                                  doi: 10.1016/j.bioactmat.2020.12.018
            88.  Bedell ML, Navara AM, Du Y, Zhang S, Mikos
               AG. Polymeric systems for bioprinting.  Chem  Rev.   101. Ng WL, Lee JM, Zhou M, et al. Vat polymerization-based
               2020;120(19):10744-10792.                          bioprinting-process, materials, applications and regulatory
               doi: 10.1021/acs.chemrev.9b00834                   challenges. Biofabrication. 2020;12(2):022001.
            89.  Douillet C, Nicodeme M, Hermant L, et al. From local to   doi: 10.1016/j.addma.2024.104189
               global matrix organization by fibroblasts: a 4D laser-assisted   102. Chekkaramkodi D, Jacob L, C MS, Umer R, Butt H. Review
               bioprinting approach. Biofabrication. 2022;14(2):025006.  of vat photopolymerization 3D printing of photonic devices.
               doi: 10.1088/1758-5090/ac40ed                      Addit Mfg. 2024;86:104189
            90.  Li J, Chen M, Fan X, Zhou H. Recent advances in bioprinting   doi: 10.1016/j.addma.2024.104189
               techniques: approaches, applications and future prospects.    103. Daly AC, Prendergast ME, Hughes AJ, Burdick JA.
               J Transl Med. 2016;14:271.                         Bioprinting for the biologist. Cell. 2021;184(1):18-32.
               doi: 10.1186/s12967-016-1028-0                     doi: 10.1016/j.cell.2020.12.002
            91.  Murphy SV, Atala A. 3D bioprinting of tissues and organs.   104. Miri AK, Nieto D, Iglesias L, et al. Microfluidics-enabled
               Nat Biotechnol. 2014;32(8):773-785.                multimaterial maskless stereolithographic bioprinting.
               doi: 10.1038/nbt.2958                              Adv Mater. 2018;30(27):e1800242.
            92.  Loterie D, Delrot P, Moser C. High-resolution tomographic      doi: 10.1002/adma.201800242
               volumetric  additive  manufacturing.  Nat Commun.   105. Creff J, Courson R, Mangeat T, et al. Fabrication of 3D
               2020;11(1):852.                                    scaffolds  reproducing  intestinal epithelium  topography
               doi: 10.1038/s41467-020-14630-4                    by high-resolution 3D stereolithography.  Biomaterials.
            93.  Hochleitner G, Jüngst T, Brown TD, et al. Additive   2019;221:119404.
               manufacturing of scaffolds with sub-micron filaments      doi: 10.1016/j.biomaterials.2019.119404

            Volume 10 Issue 6 (2024)                        88                                doi: 10.36922/ijb.4472
   91   92   93   94   95   96   97   98   99   100   101