Page 96 - IJB-10-6
P. 96
International Journal of Bioprinting 3D bioprinting techniques & hydrogels materials
81. Park MJ, Bae J, Ju YK. Structural behavior of a composite via melt electrospinning writing. Biofabrication.
curtain wall fabricated by the fused deposition modeling 3D 2015;7(3):035002.
printing method. Polymers (Basel). 2022;14(7):1431. doi: 10.1088/1758-5090/7/3/035002
doi: 10.3390/polym14071431
94. Li K, Wang C, Sun L, et al. Laser-assisted electrohydrodynamic
82. Junqueira LA, Tabriz AG, Raposo FJ, et al. Coupling of fused jet printing of hierarchical nanostructure. Appl Therm Eng.
deposition modeling and inkjet printing to produce drug 2024;253:123659.
loaded 3D printed tablets. Pharmaceutics. 2022;14(1). doi: 10.1016/j.applthermaleng.2024.123659
doi: 10.3390/pharmaceutics14010159
95. Huang J, Qin Q, Wang J. A review of stereolithography:
83. Guillotin B, Souquet A, Catros S, et al. Laser assisted processes and systems. Processes. 2020;8(9):1138.
bioprinting of engineered tissue with high cell doi: 10.3390/pr8091138
density and microscale organization. Biomaterials.
2010;31(28):7250-7256. 96. Jana S, Lerman A. Bioprinting a cardiac valve. Biotechnol
doi: 10.1016/j.biomaterials.2010.05.055 Adv. 2015;33(8):1503-1521.
doi: 10.1016/j.biotechadv.2015.07.006
84. Mézel C, Souquet A, Hallo L, Guillemot F. Bioprinting
by laser-induced forward transfer for tissue engineering 97. Hinczewski C, Corbel S, Chartier T. Ceramic suspensions
applications: jet formation modeling. Biofabrication. suitable for stereolithography. J Eur Ceram Soc.
2010;2(1):014103. 1998;18(6):583-590.
doi: 10.1088/1758-5082/2/1/014103 doi: 10.1016/S0955-2219(97)00186-6
85. Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, 98. Gruene M, Deiwick A, Koch L, et al. Laser printing of stem
Xing M. 3D bioprinting for biomedical devices and tissue cells for biofabrication of scaffold-free autologous grafts.
engineering: a review of recent trends and advances. Tissue Eng Part C Methods. 2011;17(1):79-87.
Bioact Mater. 2018;3(2):144-156. doi: 10.1089/ten.TEC.2010.0359
doi: 10.1016/j.bioactmat.2017.11.008 99. Ceballos-González CF, Bolívar-Monsalve EJ, Quevedo-
86. Dou C, Perez V, Qu J, Tsin A, Xu B, Li J. A state-of-the-art Moreno DA, et al. High-throughput and continuous chaotic
review of laser-assisted bioprinting and its future research bioprinting of spatially controlled bacterial microcosms.
trends. Chem Bio Eng Rev. 2021;8(5):517-534. ACS Biomater Sci Eng. 2021;7(6):2408-2419.
doi: 10.1002/cben.202000037 doi: 10.1021/acsbiomaterials.0c01646
87. Cheptsov VS, Tsypina SI, Minaev NV, Yusupov VI, Chichkov 100. Han Y, Jia B, Lian M, et al. High-precision, gelatin-
BN. New microorganism isolation techniques with emphasis based, hybrid, bilayer scaffolds using melt electro-
on laser printing. Int J Bioprint. 2019;5(1):165. writing to repair cartilage injury. Bioact Mater. 2021;6(7):
doi: 10.18063/ijb.v5i1.165 2173-2186.
doi: 10.1016/j.bioactmat.2020.12.018
88. Bedell ML, Navara AM, Du Y, Zhang S, Mikos
AG. Polymeric systems for bioprinting. Chem Rev. 101. Ng WL, Lee JM, Zhou M, et al. Vat polymerization-based
2020;120(19):10744-10792. bioprinting-process, materials, applications and regulatory
doi: 10.1021/acs.chemrev.9b00834 challenges. Biofabrication. 2020;12(2):022001.
89. Douillet C, Nicodeme M, Hermant L, et al. From local to doi: 10.1016/j.addma.2024.104189
global matrix organization by fibroblasts: a 4D laser-assisted 102. Chekkaramkodi D, Jacob L, C MS, Umer R, Butt H. Review
bioprinting approach. Biofabrication. 2022;14(2):025006. of vat photopolymerization 3D printing of photonic devices.
doi: 10.1088/1758-5090/ac40ed Addit Mfg. 2024;86:104189
90. Li J, Chen M, Fan X, Zhou H. Recent advances in bioprinting doi: 10.1016/j.addma.2024.104189
techniques: approaches, applications and future prospects. 103. Daly AC, Prendergast ME, Hughes AJ, Burdick JA.
J Transl Med. 2016;14:271. Bioprinting for the biologist. Cell. 2021;184(1):18-32.
doi: 10.1186/s12967-016-1028-0 doi: 10.1016/j.cell.2020.12.002
91. Murphy SV, Atala A. 3D bioprinting of tissues and organs. 104. Miri AK, Nieto D, Iglesias L, et al. Microfluidics-enabled
Nat Biotechnol. 2014;32(8):773-785. multimaterial maskless stereolithographic bioprinting.
doi: 10.1038/nbt.2958 Adv Mater. 2018;30(27):e1800242.
92. Loterie D, Delrot P, Moser C. High-resolution tomographic doi: 10.1002/adma.201800242
volumetric additive manufacturing. Nat Commun. 105. Creff J, Courson R, Mangeat T, et al. Fabrication of 3D
2020;11(1):852. scaffolds reproducing intestinal epithelium topography
doi: 10.1038/s41467-020-14630-4 by high-resolution 3D stereolithography. Biomaterials.
93. Hochleitner G, Jüngst T, Brown TD, et al. Additive 2019;221:119404.
manufacturing of scaffolds with sub-micron filaments doi: 10.1016/j.biomaterials.2019.119404
Volume 10 Issue 6 (2024) 88 doi: 10.36922/ijb.4472

