Page 116 - IJB-10-6
P. 116

International Journal of Bioprinting                                       3D-printed bioelectronic devices




            23.  Minemawari H, Yamada T, Matsui H, et al. Inkjet printing of   for advanced manufacturing.  Lab Chip. 2015;15(12):
               single-crystal films. Nature. 2011;475(7356):364-367.  2538-2558.
               doi: 10.1038/nature10313                           doi: 10.1039/C5LC00235D
            24.  De Gans BJ, Duineveld PC, Schubert US. Inkjet printing   36.  Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S. 3D printing
               of polymers: state of the art and future developments. Adv   of functional biomaterials for tissue engineering. Curr Opin
               Mater. 2004;16(3):203-213.                         Biotechnol. 2016;40:103-112.
               doi: 10.1002/adma.200300385                        doi: 10.1016/j.copbio.2016.03.014
            25.  Calvert P. Printing cells. Science. 2007;318(5848):208-209.  37.  Yan K, Li J, Pan L, Shi Y. Inkjet printing for flexible and
               doi: 10.1126/science.1144212                       wearable electronics. APL Mater. 2020;8(12):120705.
                                                                  doi: 10.1063/5.0031669
            26.  Cui X, Boland T. Human microvasculature fabrication
               using thermal inkjet printing technology.  Biomaterials.   38.  Shah MA, Lee D-G, Lee B-Y, Hur S. Classifications and
               2009;30(31):6221-6227.                             applications of inkjet printing technology: a review. IEEE
               doi: 10.1016/j.biomaterials.2009.07.056            Access. 2021
                                                                  doi: 10.1109/ACCESS.2021.3119219
            27.  Huang Z, Tang Y, Guo H, et al. 3D printing of ceramics and
               graphene  circuits-on-ceramics  by  thermal  bubble  inkjet   39.  Tekin E, Smith PJ, Schubert US. Inkjet printing as a
               technology and high temperature sintering.  Ceramics Int.   deposition and patterning tool for polymers and inorganic
               2020;46(8):10096-10104.                            particles. Soft Matter. 2008;4(4):703-713.
               doi: 10.1016/j.ceramint.2019.12.278                doi: 10.1039/B711984D
            28.  Wood V, Panzer MJ, Chen J, et al. Inkjet‐printed quantum   40.  Chung S, Cho K, Lee T. Recent progress in inkjet-printed
               dot–polymer composites for full‐color ac‐driven displays.   thin-film transistors. Adv Sci (Weinh). 2019;6(6):1801445.
               Adv Mater. 2009;21(21):2151-2155.                  doi: 10.1002/advs.201801445
               doi: 10.1002/adma.200990078
                                                               41.  Rahmati S, Shirazi S, Baghayeri H. Piezo‐electric head
            29.  Teo MY, RaviChandran N, Kim N, et al. Direct patterning   application in a new 3D printing design. Rapid Prototyping
               of highly conductive PEDOT: PSS/ionic liquid hydrogel via   J. 2009;15(3):187-191.
               microreactive inkjet printing.  ACS Appl Mater Interfaces.      doi: 10.1108/13552540910960280
               2019;11(40):37069-37076.                        42.  Wang Z, Wu W, Yang Q, Li Y, Noh C-H. In-situ fabrication
               doi: 10.1021/acsami.9b12069
                                                                  of flexible vertically integrated electronic circuits by inkjet
            30.  Mangoma TN, Yamamoto S, Malliaras GG, Daly R. Hybrid   printing. J Alloys Compd. 2009;486(1-2):706-710.
               3D/Inkjet-printed organic neuromorphic transistors.  Adv      doi: 10.1016/j.jallcom.2009.07.044
               Mater Technol. 2022;7(2):2000798.               43.  Lo L-W, Zhao J, Wan H, Wang Y, Chakrabartty S, Wang C.
               doi: 10.1002/admt.202000798
                                                                  An inkjet-printed PEDOT: PSS-based stretchable conductor
            31.  Carey T, Cacovich S, Divitini G, et al. Fully inkjet-printed   for wearable health monitoring device applications.  ACS
               two-dimensional material field-effect heterojunctions   Appl Mater Interfaces. 2021;13(18):21693-21702.
               for wearable and textile electronics.  Nat  Commun.      doi: 10.1021/acsami.1c00537
               2017;8(1):1202.                                 44.  Delekta SS, Adolfsson KH, Erdal NB, Hakkarainen M, Östling
               doi: 10.1038/s41467-017-01210-2
                                                                  M, Li J. Fully inkjet printed ultrathin microsupercapacitors
            32.  Gibertini E, Lissandrello F, Bertoli L, Viviani P, Magagnin L.   based on graphene electrodes and a nano-graphene oxide
               All-inkjet-printed Ti3C2 MXene capacitor for textile energy   electrolyte. Nanoscale. 2019;11(21):10172-10177.
               storage. Coatings. 2023;13(2):230.                 doi: 10.1039/C9NR01427F
               doi: 10.3390/coatings13020230
                                                               45.  Su C-H, Chiu H-L, Chen Y-C, et al. Highly responsive
            33.  Li Y, Dahhan O, Filipe CD, Brennan JD, Pelton RH. Deposited   PEG/gold nanoparticle thin-film humidity sensor via inkjet
               nanoparticles can promote air clogging of piezoelectric   printing technology. Langmuir. 2019;35(9):3256-3264.
               inkjet  printhead  nozzles.  Langmuir.  2019;35(16):      doi: 10.1021/acs.langmuir.8b03433
               5517-5524.                                      46.  Wen D, Ying G, Liu L, et al. Flexible and high‐performance
               doi: 10.1021/acs.langmuir.8b04335
                                                                  MXene/MnO2 film electrodes fabricated by inkjet printing:
            34.  Li Y, Dahhan O, Filipe CD, Brennan JD, Pelton RH.   toward  a new generation  supercapacitive  application. Adv
               Optimizing piezoelectric inkjet printing of silica sols   Mater Interfaces. 2021;8(21):2101453.
               for biosensor production.  J Sol-Gel Sci  Technol. 2018;      doi: 10.1002/admi.202101453
               87:657-664.                                     47.  Kim JD, Choi JS, Kim BS, Choi YC, Cho YW. Piezoelectric
               doi: 10.1007/s10971-018-4762-3
                                                                  inkjet printing of polymers: stem cell patterning on polymer
            35.  Li J, Rossignol F, Macdonald J. Inkjet printing for biosensor   substrates. Polymer. 2010;51(10):2147-2154.
               fabrication:  combining  chemistry  and  technology     doi: 10.1016/j.polymer.2010.03.038


            Volume 10 Issue 6 (2024)                       108                                doi: 10.36922/ijb.4139
   111   112   113   114   115   116   117   118   119   120   121