Page 118 - IJB-10-6
P. 118

International Journal of Bioprinting                                       3D-printed bioelectronic devices




               printing of room‐temperature gallium‐based liquid metal   86.  Agarwala S, Goh GL, Yap YL, et al. Development of
               alloys. Adv Eng Mater. 2019;21(11):1900400.        bendable strain sensor with embedded microchannels using
               doi: 10.1002/adem.201900400                        3D printing. Sens Actuators A: Phys. 2017;263:593-599.
                                                                  doi: 10.1016/j.sna.2017.07.025
            74.  Wu P, Fu J, Xu Y, He Y. Liquid metal microgels for three-
               dimensional printing of smart electronic clothes. ACS Appl   87.  Kwon SN, Kim SW, Kim IG, Hong YK, Na SI. Direct 3D
               Mater Interfaces. 2022;14(11):13458-13467.         Printing  of  graphene  nanoplatelet/silver  nanoparticle‐
               doi: 10.1021/acsami.1c22975                        based nanocomposites for multiaxial piezoresistive sensor
                                                                  applications. Adv Mater Technol. 2019;4(2):1800500.
            75.  Kim S, Oh J, Jeong D, Bae J. Direct wiring of eutectic
               gallium–indium to a metal electrode for soft sensor systems.      doi: 10.1002/admt.201800500
               ACS Appl Mater Interfaces. 2019;11(22):20557-20565.  88.  Ali MA, Hu C, Jahan S, et al. Sensing of COVID‐19 antibodies
               doi: 10.1021/acsami.9b05363                        in seconds via aerosol jet nanoprinted reduced‐graphene‐
                                                                  oxide‐coated 3D electrodes. Adv Mater. 2021;33(7):2006647.
            76.  Wang Y, Yu Z, Mao G, et al. Printable liquid‐metal@ PDMS
               stretchable heater with high stretchability and dynamic      doi: 10.1002/adma.202006647
               stability for wearable thermotherapy.  Adv Mater Technol.   89.  Zhu C, Han TY-J, Duoss EB, et al. Highly compressible
               2019;4(2):1800435.                                 3D periodic graphene aerogel microlattices. Nat Commun.
               doi: 10.1002/admt.201800435                        2015;6(1):6962.
                                                                  doi: 10.1038/ncomms7962
            77.  Oh J, Kim S, Lee S, Jeong S, Ko SH, Bae J. A liquid metal
               based multimodal sensor and haptic feedback device for   90.  Zhu  D,  Ren  Y,  Liao  G,  et  al.  Thermal  and  mechanical
               thermal and tactile sensation generation in virtual reality.   properties of polyamide 12/graphene nanoplatelets
               Adv Funct Mater. 2021;31(39):2007772.              nanocomposites and parts fabricated by fused deposition
               doi: 10.1002/adfm.202007772                        modeling. J Appl Polym Sci. 2017;134(39):45332.
                                                                  doi: 10.1002/app.45332
            78.  Allen G, Bayles R, Gile W, Jesser W. Small particle melting of
               pure metals. Thin Solid Films. 1986;144(2):297-308.  91.  Wang J, Liu Y, Fan Z, Wang W, Wang B, Guo Z. Ink-based
               doi: 10.1016/0040-6090(86)90422-0                  3D printing technologies for graphene-based materials: a
                                                                  review. Adv Compos Hybrid Mater. 2019;2:1-33.
            79.  McNamara  K,  Tofail  SA.  Nanoparticles  in  biomedical
               applications. Adv Phys: X. 2017;2(1):54-88.        doi: 10.1007/s42114-018-0067-9
               doi: 10.1080/23746149.2016.1254570              92.  Thostenson ET, Li C, Chou T-W. Nanocomposites in context.
                                                                  Compos Sci Technol. 2005;65(3-4):491-516.
            80.  Das S, Langbang L, Haque M, Belwal VK, Aguan K, Roy AS.
               Biocompatible silver nanoparticles: an investigation into      doi: 10.1016/j.compscitech.2004.11.003
               their protein binding efficacies, anti-bacterial effects and cell   93.  Balasubramanian K, Burghard M. Chemically functionalized
               cytotoxicity studies. J Pharm Anal. 2021;11(4):422-434.  carbon nanotubes. Small. 2005;1(2):180-192.
               doi: 10.1016/j.jpha.2020.12.003                    doi: 10.1002/smll.200400118
            81.  Rajendran G, Rajamuthuramalingam T, Jesse DMI,   94.  Goh GL, Agarwala S, Yeong WY. Directed and on-demand
               Kathiravan K. Synthesis and characterization of    alignment of carbon nanotube: a review toward 3D printing
               biocompatible acetaminophen stabilized gold nanoparticles.   of electronics. Adv Mater Interfaces. 2019;6(4):1801318.
               Mater Res Express. 2019;6(9):095043.               doi: 10.1002/admi.201801318
               doi: 10.1088/2053-1591/ab2e4d
                                                               95.  Lee S-J, Wei Z, Nowicki M, et al. 3D printing nano
            82.  Nejati K, Dadashpour M, Gharibi T, Mellatyar H,   conductive multi-walled carbon nanotube scaffolds for
               Akbarzadeh  A.  Biomedical  applications  of  functionalized   nerve regeneration. J Neural Eng. 2018;15(1):016018.
               gold nanoparticles: a review. J Clust Sci. 2021;33:1-16.     doi: 10.1088/1741-2552/aa95a5
               doi: 10.1007/s10876-020-01955-9
                                                               96.  Jarosova R, Mcclure SE, Gajda M, et al. Inkjet-printed
            83.  Madhavan R. Flexible and stretchable strain sensors fabricated   carbon nanotube electrodes for measuring pyocyanin and
               by inkjet printing of silver nanowire-ecoflex composites.  J   uric acid in a wound fluid simulant and culture media. Anal
               Mater Sci: Mater Electron. 2022;33(7):3465-3484.   Chem. 2019;91(14):8835-8844.
               doi: 10.1007/s10854-022-09087-8                    doi: 10.1021/acs.analchem.8b05591
            84.  Kong YL, Tamargo IA, Kim H, et al. 3D printed quantum dot   97.  Eng H, Maleksaeedi S, Yu S, et al. Development of CNTs-
               light-emitting diodes. Nano Lett. 2014;14(12):7017-7023.  filled photopolymer for projection stereolithography. Rapid
               doi: 10.1021/nl5033292                             Prototyping J. 2017;23(1):129-136.
                                                                  doi: 10.1108/RPJ-10-2015-0148
            85.  Rosati G, Ravarotto M, Scaramuzza M, De Toni A,
               Paccagnella A. Silver nanoparticles inkjet-printed flexible   98.  Nadernezhad A, Unal S, Khani N, Koc B. Material extrusion-
               biosensor for rapid label-free antibiotic detection in milk.   based additive manufacturing of structurally controlled poly
               Sens Actuators B: Chem. 2019;280:280-289.          (lactic acid)/carbon nanotube nanocomposites.  Int J Adv
               doi: 10.1016/j.snb.2018.09.084                     Manuf Technol. 2019;102:2119-2132.
            Volume 10 Issue 6 (2024)                       110                                doi: 10.36922/ijb.4139
   113   114   115   116   117   118   119   120   121   122   123