Page 118 - IJB-10-6
P. 118
International Journal of Bioprinting 3D-printed bioelectronic devices
printing of room‐temperature gallium‐based liquid metal 86. Agarwala S, Goh GL, Yap YL, et al. Development of
alloys. Adv Eng Mater. 2019;21(11):1900400. bendable strain sensor with embedded microchannels using
doi: 10.1002/adem.201900400 3D printing. Sens Actuators A: Phys. 2017;263:593-599.
doi: 10.1016/j.sna.2017.07.025
74. Wu P, Fu J, Xu Y, He Y. Liquid metal microgels for three-
dimensional printing of smart electronic clothes. ACS Appl 87. Kwon SN, Kim SW, Kim IG, Hong YK, Na SI. Direct 3D
Mater Interfaces. 2022;14(11):13458-13467. Printing of graphene nanoplatelet/silver nanoparticle‐
doi: 10.1021/acsami.1c22975 based nanocomposites for multiaxial piezoresistive sensor
applications. Adv Mater Technol. 2019;4(2):1800500.
75. Kim S, Oh J, Jeong D, Bae J. Direct wiring of eutectic
gallium–indium to a metal electrode for soft sensor systems. doi: 10.1002/admt.201800500
ACS Appl Mater Interfaces. 2019;11(22):20557-20565. 88. Ali MA, Hu C, Jahan S, et al. Sensing of COVID‐19 antibodies
doi: 10.1021/acsami.9b05363 in seconds via aerosol jet nanoprinted reduced‐graphene‐
oxide‐coated 3D electrodes. Adv Mater. 2021;33(7):2006647.
76. Wang Y, Yu Z, Mao G, et al. Printable liquid‐metal@ PDMS
stretchable heater with high stretchability and dynamic doi: 10.1002/adma.202006647
stability for wearable thermotherapy. Adv Mater Technol. 89. Zhu C, Han TY-J, Duoss EB, et al. Highly compressible
2019;4(2):1800435. 3D periodic graphene aerogel microlattices. Nat Commun.
doi: 10.1002/admt.201800435 2015;6(1):6962.
doi: 10.1038/ncomms7962
77. Oh J, Kim S, Lee S, Jeong S, Ko SH, Bae J. A liquid metal
based multimodal sensor and haptic feedback device for 90. Zhu D, Ren Y, Liao G, et al. Thermal and mechanical
thermal and tactile sensation generation in virtual reality. properties of polyamide 12/graphene nanoplatelets
Adv Funct Mater. 2021;31(39):2007772. nanocomposites and parts fabricated by fused deposition
doi: 10.1002/adfm.202007772 modeling. J Appl Polym Sci. 2017;134(39):45332.
doi: 10.1002/app.45332
78. Allen G, Bayles R, Gile W, Jesser W. Small particle melting of
pure metals. Thin Solid Films. 1986;144(2):297-308. 91. Wang J, Liu Y, Fan Z, Wang W, Wang B, Guo Z. Ink-based
doi: 10.1016/0040-6090(86)90422-0 3D printing technologies for graphene-based materials: a
review. Adv Compos Hybrid Mater. 2019;2:1-33.
79. McNamara K, Tofail SA. Nanoparticles in biomedical
applications. Adv Phys: X. 2017;2(1):54-88. doi: 10.1007/s42114-018-0067-9
doi: 10.1080/23746149.2016.1254570 92. Thostenson ET, Li C, Chou T-W. Nanocomposites in context.
Compos Sci Technol. 2005;65(3-4):491-516.
80. Das S, Langbang L, Haque M, Belwal VK, Aguan K, Roy AS.
Biocompatible silver nanoparticles: an investigation into doi: 10.1016/j.compscitech.2004.11.003
their protein binding efficacies, anti-bacterial effects and cell 93. Balasubramanian K, Burghard M. Chemically functionalized
cytotoxicity studies. J Pharm Anal. 2021;11(4):422-434. carbon nanotubes. Small. 2005;1(2):180-192.
doi: 10.1016/j.jpha.2020.12.003 doi: 10.1002/smll.200400118
81. Rajendran G, Rajamuthuramalingam T, Jesse DMI, 94. Goh GL, Agarwala S, Yeong WY. Directed and on-demand
Kathiravan K. Synthesis and characterization of alignment of carbon nanotube: a review toward 3D printing
biocompatible acetaminophen stabilized gold nanoparticles. of electronics. Adv Mater Interfaces. 2019;6(4):1801318.
Mater Res Express. 2019;6(9):095043. doi: 10.1002/admi.201801318
doi: 10.1088/2053-1591/ab2e4d
95. Lee S-J, Wei Z, Nowicki M, et al. 3D printing nano
82. Nejati K, Dadashpour M, Gharibi T, Mellatyar H, conductive multi-walled carbon nanotube scaffolds for
Akbarzadeh A. Biomedical applications of functionalized nerve regeneration. J Neural Eng. 2018;15(1):016018.
gold nanoparticles: a review. J Clust Sci. 2021;33:1-16. doi: 10.1088/1741-2552/aa95a5
doi: 10.1007/s10876-020-01955-9
96. Jarosova R, Mcclure SE, Gajda M, et al. Inkjet-printed
83. Madhavan R. Flexible and stretchable strain sensors fabricated carbon nanotube electrodes for measuring pyocyanin and
by inkjet printing of silver nanowire-ecoflex composites. J uric acid in a wound fluid simulant and culture media. Anal
Mater Sci: Mater Electron. 2022;33(7):3465-3484. Chem. 2019;91(14):8835-8844.
doi: 10.1007/s10854-022-09087-8 doi: 10.1021/acs.analchem.8b05591
84. Kong YL, Tamargo IA, Kim H, et al. 3D printed quantum dot 97. Eng H, Maleksaeedi S, Yu S, et al. Development of CNTs-
light-emitting diodes. Nano Lett. 2014;14(12):7017-7023. filled photopolymer for projection stereolithography. Rapid
doi: 10.1021/nl5033292 Prototyping J. 2017;23(1):129-136.
doi: 10.1108/RPJ-10-2015-0148
85. Rosati G, Ravarotto M, Scaramuzza M, De Toni A,
Paccagnella A. Silver nanoparticles inkjet-printed flexible 98. Nadernezhad A, Unal S, Khani N, Koc B. Material extrusion-
biosensor for rapid label-free antibiotic detection in milk. based additive manufacturing of structurally controlled poly
Sens Actuators B: Chem. 2019;280:280-289. (lactic acid)/carbon nanotube nanocomposites. Int J Adv
doi: 10.1016/j.snb.2018.09.084 Manuf Technol. 2019;102:2119-2132.
Volume 10 Issue 6 (2024) 110 doi: 10.36922/ijb.4139

