Page 119 - IJB-10-6
P. 119
International Journal of Bioprinting 3D-printed bioelectronic devices
doi: 10.1007/s00170-018-03283-9 111. Vijayavenkataraman S, Kannan S, Cao T, Fuh JY, Sriram
G, Lu WF. 3D-printed PCL/PPy conductive scaffolds as
99. Belaid H, Nagarajan S, Teyssier C, et al. Development of new
biocompatible 3D printed graphene oxide-based scaffolds. three-dimensional porous nerve guide conduits (NGCs)
Mater Sci Eng: C. 2020;110:110595. for peripheral nerve injury repair. Front Bioeng Biotechnol.
doi: 10.1016/j.msec.2019.110595 2019;7:266.
doi: 10.3389/fbioe.2019.00266
100. eSilva EP, Huang B, Helaehil JV, et al. In vivo study of
conductive 3D printed PCL/MWCNTs scaffolds with 112. Qian J, Xiao R, Su F, Guo M, Liu D. 3D wet-spinning printing
electrical stimulation for bone tissue engineering. Bio-Des of wearable flexible electronic sensors of polypyrrole@
Manuf. 2021;4(2):190-202. polyvinyl formate. J Ind Eng Chem. 2022;111:490-498.
doi: 10.1007/s42242-020-00116-1 doi: 10.1016/j.jiec.2022.04.030
101. Ryan KR, Down MP, Hurst NJ, Keefe EM, Banks CE. 113. Ajdary R, Ezazi NZ, Correia A, et al. Multifunctional
Additive manufacturing (3D printing) of electrically 3D-printed patches for long-term drug release
conductive polymers and polymer nanocomposites and therapies after myocardial infarction. Adv Funct Mater.
their applications. eScience. 2022;2(4):365–381. 2020;30(34):2003440.
doi: 10.1016/j.esci.2022.07.003 doi: 10.1002/adfm.202003440
102. Shi H, Liu C, Jiang Q, Xu J. Effective approaches to improve 114. Distler T, Polley C, Shi F, et al. Electrically conductive and
the electrical conductivity of PEDOT: PSS: a review. Adv 3D-printable oxidized alginate-gelatin polypyrrole:PSS
Electron Mater. 2015;1(4):1500017. hydrogels for tissue engineering. Adv Healthc Mater.
doi: 10.1002/aelm.201500017 2021;10(9):2001876.
doi: 10.1002/adhm.202001876
103. Su R, Park SH, Ouyang X, Ahn SI, McAlpine MC. 3D-printed
flexible organic light-emitting diode displays. Sci Adv. 115. Gu Y, Zhang Y, Shi Y, Zhang L, Xu X. 3D all printing of
2022;8(1):eabl8798. polypyrrole nanotubes for high mass loading flexible
doi: 10.1126/sciadv.abl8798 supercapacitor. ChemistrySelect. 2019;4(36):10902-10906.
doi: 10.1002/slct.201902721
104. Vuorinen T, Niittynen J, Kankkunen T, Kraft TM, Mäntysalo
M. Inkjet-printed graphene/PEDOT: PSS temperature 116. Li W, Liu J, Wei J, Yang Z, Ren C, Li B. Recent progress
sensors on a skin-conformable polyurethane substrate. Sci of conductive hydrogel fibers for flexible electronics:
Rep. 2016;6(1):35289. fabrications, applications, and perspectives. Adv Funct
doi: 10.1038/srep35289 Mater. 2023;33(17):2213485.
doi: 10.1002/adfm.202213485
105. Yang J, Cao Q, Tang X, et al. 3D-printed highly stretchable
conducting polymer electrodes for flexible supercapacitors. 117. Yuk H, Lu B, Zhao X. Hydrogel bioelectronics. Chem Soc
J Mater Chem A. 2021;9(35):19649-19658. Rev. 2019;48(6):1642-1667.
doi: 10.1039/D1TA02617H doi: 10.1039/c8cs00595h
106. Shen Z, Zhang Z, Zhang N, et al. High‐stretchability, 118. Kang M, Park J, Kim SA, et al. Modulus-tunable
ultralow‐hysteresis conductingpolymer hydrogel strain multifunctional hydrogel ink with nanofillers for 3D-Printed
sensors for soft machines. Adv Mater. 2022;34(32): soft electronics. Biosens Bioelectron. 2024;255:116257.
2203650. doi: 10.1016/j.bios.2024.116257
doi: 10.1002/adma.202203650 119. Zhou Y, Wan C, Yang Y, et al. Highly stretchable, elastic, and
107. Molina-Lopez F, Gao T, Kraft U, et al. Inkjet-printed ionic conductive hydrogel for artificial soft electronics. Adv
stretchable and low voltage synaptic transistor array. Nat Funct Mater. 2019;29(1):1806220.
Commun. 2019;10(1):2676. doi: 10.1002/adfm.201806220
doi: 10.1038/s41467-019-10569-3 120. Zhou J, Yan H, Wang C, Gong H, Nie Q, Long Y. 3D printing
108. Soni M, Bhattacharjee M, Ntagios M, Dahiya R. Printed highly stretchable conductors for flexible electronics with low
temperature sensor based on PEDOT: PSS-graphene oxide signal hysteresis. Virt Phys Prototyping. 2022;17(1):19-32.
composite. IEEE Sens J. 2020;20(14):7525-7531. doi: 10.1080/17452759.2021.1980283
doi: 10.1109/JSEN.2020.2969667
121. Fantino E, Roppolo I, Zhang D, et al. 3D printing/interfacial
109. Yuk H, Lu B, Lin S, et al. 3D printing of conducting polymers. polymerization coupling for the fabrication of conductive
Nat Commun. 2020;11(1):1604. hydrogel. Macromol Mater Eng. 2018;303(4):1700356.
doi: 10.1038/s41467-020-15316-7 doi: 10.1002/mame.201700356
110. Scordo G, Bertana V, Scaltrito L, et al. A novel highly 122. Carcione R, Pescosolido F, Montaina L, et al. Self-standing
electrically conductive composite resin for stereolithography. 3D-printed PEGDA–PANIs electroconductive hydrogel
Mater Today Commun. 2019;19:12-17. composites for pH monitoring. Gels. 2023;9(10):784.
doi: 10.1016/j.mtcomm.2018.12.017 doi: 10.3390/gels9100784
Volume 10 Issue 6 (2024) 111 doi: 10.36922/ijb.4139

