Page 119 - IJB-10-6
P. 119

International Journal of Bioprinting                                      3D-printed bioelectronic devices




               doi: 10.1007/s00170-018-03283-9                 111. Vijayavenkataraman S, Kannan S, Cao T, Fuh JY, Sriram
                                                                  G, Lu WF. 3D-printed PCL/PPy conductive scaffolds as
            99.  Belaid H, Nagarajan S, Teyssier C, et al. Development of new
               biocompatible 3D printed graphene oxide-based scaffolds.   three-dimensional porous nerve guide conduits (NGCs)
               Mater Sci Eng: C. 2020;110:110595.                 for peripheral nerve injury repair. Front Bioeng Biotechnol.
               doi: 10.1016/j.msec.2019.110595                    2019;7:266.
                                                                  doi: 10.3389/fbioe.2019.00266
            100. eSilva EP, Huang B, Helaehil JV, et al. In vivo study of
               conductive 3D printed PCL/MWCNTs scaffolds with   112. Qian J, Xiao R, Su F, Guo M, Liu D. 3D wet-spinning printing
               electrical stimulation for bone tissue engineering. Bio-Des   of  wearable  flexible  electronic  sensors  of  polypyrrole@
               Manuf. 2021;4(2):190-202.                          polyvinyl formate. J Ind Eng Chem. 2022;111:490-498.
               doi: 10.1007/s42242-020-00116-1                    doi: 10.1016/j.jiec.2022.04.030
            101. Ryan  KR,  Down  MP,  Hurst  NJ,  Keefe  EM,  Banks  CE.   113. Ajdary R, Ezazi NZ, Correia A, et al. Multifunctional
               Additive manufacturing (3D printing) of electrically   3D-printed  patches  for  long-term  drug  release
               conductive polymers and polymer nanocomposites and   therapies after myocardial infarction.  Adv  Funct  Mater.
               their applications. eScience. 2022;2(4):365–381.   2020;30(34):2003440.
               doi: 10.1016/j.esci.2022.07.003                    doi: 10.1002/adfm.202003440
            102. Shi H, Liu C, Jiang Q, Xu J. Effective approaches to improve   114. Distler T, Polley C, Shi F, et al. Electrically conductive and
               the electrical conductivity of PEDOT: PSS: a review.  Adv   3D-printable oxidized alginate-gelatin polypyrrole:PSS
               Electron Mater. 2015;1(4):1500017.                 hydrogels for tissue engineering.  Adv Healthc Mater.
               doi: 10.1002/aelm.201500017                        2021;10(9):2001876.
                                                                  doi: 10.1002/adhm.202001876
            103. Su R, Park SH, Ouyang X, Ahn SI, McAlpine MC. 3D-printed
               flexible organic light-emitting diode displays.  Sci  Adv.   115. Gu Y, Zhang Y, Shi Y, Zhang L, Xu X. 3D all printing of
               2022;8(1):eabl8798.                                polypyrrole nanotubes for high mass loading flexible
               doi: 10.1126/sciadv.abl8798                        supercapacitor. ChemistrySelect. 2019;4(36):10902-10906.
                                                                  doi: 10.1002/slct.201902721
            104. Vuorinen T, Niittynen J, Kankkunen T, Kraft TM, Mäntysalo
               M. Inkjet-printed graphene/PEDOT: PSS temperature   116. Li W, Liu J, Wei J, Yang Z, Ren C, Li B. Recent progress
               sensors on a skin-conformable polyurethane substrate. Sci   of conductive hydrogel fibers for flexible electronics:
               Rep. 2016;6(1):35289.                              fabrications, applications, and perspectives.  Adv  Funct
               doi: 10.1038/srep35289                             Mater. 2023;33(17):2213485.
                                                                  doi: 10.1002/adfm.202213485
            105. Yang J, Cao Q, Tang X, et al. 3D-printed highly stretchable
               conducting polymer electrodes for flexible supercapacitors.   117. Yuk H, Lu B, Zhao X. Hydrogel bioelectronics. Chem Soc
               J Mater Chem A. 2021;9(35):19649-19658.            Rev. 2019;48(6):1642-1667.
               doi: 10.1039/D1TA02617H                            doi: 10.1039/c8cs00595h
            106. Shen Z, Zhang Z, Zhang N, et al. High‐stretchability,   118. Kang  M,  Park  J,  Kim  SA,  et  al.  Modulus-tunable
               ultralow‐hysteresis conductingpolymer hydrogel strain   multifunctional hydrogel ink with nanofillers for 3D-Printed
               sensors  for  soft  machines.  Adv Mater.  2022;34(32):   soft electronics. Biosens Bioelectron. 2024;255:116257.
               2203650.                                           doi: 10.1016/j.bios.2024.116257
               doi: 10.1002/adma.202203650                     119. Zhou Y, Wan C, Yang Y, et al. Highly stretchable, elastic, and
            107. Molina-Lopez F, Gao T, Kraft U, et al. Inkjet-printed   ionic conductive hydrogel for artificial soft electronics. Adv
               stretchable and low voltage synaptic transistor array.  Nat   Funct Mater. 2019;29(1):1806220.
               Commun. 2019;10(1):2676.                           doi: 10.1002/adfm.201806220
               doi: 10.1038/s41467-019-10569-3                 120. Zhou J, Yan H, Wang C, Gong H, Nie Q, Long Y. 3D printing
            108. Soni M, Bhattacharjee M, Ntagios M, Dahiya R. Printed   highly stretchable conductors for flexible electronics with low
               temperature sensor based on PEDOT: PSS-graphene oxide   signal hysteresis. Virt Phys Prototyping. 2022;17(1):19-32.
               composite. IEEE Sens J. 2020;20(14):7525-7531.     doi: 10.1080/17452759.2021.1980283
               doi: 10.1109/JSEN.2020.2969667
                                                               121. Fantino E, Roppolo I, Zhang D, et al. 3D printing/interfacial
            109. Yuk H, Lu B, Lin S, et al. 3D printing of conducting polymers.   polymerization coupling for the fabrication of conductive
               Nat Commun. 2020;11(1):1604.                       hydrogel. Macromol Mater Eng. 2018;303(4):1700356.
               doi: 10.1038/s41467-020-15316-7                    doi: 10.1002/mame.201700356
            110. Scordo G, Bertana V, Scaltrito L, et al. A novel highly   122. Carcione R, Pescosolido F, Montaina L, et al. Self-standing
               electrically conductive composite resin for stereolithography.   3D-printed PEGDA–PANIs electroconductive hydrogel
               Mater Today Commun. 2019;19:12-17.                 composites for pH monitoring. Gels. 2023;9(10):784.
               doi: 10.1016/j.mtcomm.2018.12.017                  doi: 10.3390/gels9100784


            Volume 10 Issue 6 (2024)                       111                                doi: 10.36922/ijb.4139
   114   115   116   117   118   119   120   121   122   123   124