Page 120 - IJB-10-6
P. 120

International Journal of Bioprinting                                       3D-printed bioelectronic devices




            123. Distler T, Boccaccini AR. 3D printing of electrically   applications. Mater Today. 2023;69:107-132.
               conductive hydrogels for tissue engineering and      doi: 10.1016/j.mattod.2023.06.019
               biosensors–a review. Acta Biomater. 2020;101:1-13.  135. Kong YL, Gupta MK, Johnson BN, McAlpine MC. 3D printed
               doi: 10.1016/j.actbio.2019.08.044
                                                                  bionic nanodevices. Nano Today. 2016;11(3):330-350.
            124. Serafin A, Murphy C, Rubio MC, Collins MN. Printable      doi: 10.1016/j.nantod.2016.04.007
               alginate/gelatin hydrogel reinforced with carbon nanofibers   136. Mannoor MS, Jiang Z, James T, et al. 3D printed bionic ears.
               as electrically conductive scaffolds for tissue engineering.   Nano Lett. 2013;13(6):2634-2639.
               Mater Sci Eng: C. 2021;122:111927.                 doi: 10.1021/nl4007744
               doi: 10.1016/j.msec.2021.111927
                                                               137. Lu L, Zhang J, Xie Y, et al. Wearable health devices in health
            125. Liu J, Garcia J, Leahy LM, et al. 3D printing of multifunctional   care: narrative systematic review.  JMIR mHealth  uHealth.
               conductive polymer composite hydrogels. Adv Funct Mater.   2020;8(11):e18907.
               2023;33(37):2214196.                               doi: 10.2196/18907
               doi: 10.1002/adfm.202214196
                                                               138. Ho DH, Hong P, Han JT, et al. 3D‐printed sugar scaffold
            126. Deng Z, Hu T, Lei Q, He J, Ma PX, Guo B. Stimuli-  for high‐precision and highly sensitive active and passive
               responsive conductive nanocomposite hydrogels with high   wearable sensors. Adv Sci. 2020;7(1):1902521.
               stretchability, self-healing, adhesiveness, and 3D printability      doi: 10.1002/advs.201902521
               for human motion sensing.  ACS Appl Mater Interfaces.
               2019;11(7):6796-6808.                           139. Ouyang X, Su R, Ng DWH, Han G, Pearson DR, McAlpine
               doi: 10.1021/acsami.8b20178                        MC. 3D printed skin-interfaced UV-visible hybrid
                                                                  photodetectors. Adv Sci (Weinh). 2022;9(25):e2201275.
            127. Qiu K, Haghiashtiani G, McAlpine MC. 3D printed organ      doi: 10.1002/advs.202201275
               models for surgical applications. Annu Rev Anal Chem (Palo
               Alto Calif). 2018;11(1):287-306.                140. Wang Z, Gao W, Zhang Q, et al. 3D-printed graphene/
               doi: 10.1146/annurev-anchem-061417-125935          polydimethylsiloxane composites for stretchable and strain-
                                                                  insensitive temperature sensors. ACS Appl Mater Interfaces.
            128. Mitsouras D, Liacouras P, Imanzadeh A, et al. Medical 3D   2019;11(1):1344-1352.
               printing for the radiologist.  Radiographics. 2015;35(7):      doi: 10.1021/acsami.8b16139
               1965-1988.
               doi: 10.1148/rg.2015140320                      141. Hou Y, Gao M, Gao J, et al. 3D printed conformal strain
                                                                  and humidity sensors  for human motion prediction and
            129. Qiu K, Zhao Z, Haghiashtiani G, et al. 3D printed organ   health monitoring via machine learning. Adv Sci (Weinh).
               models with physical properties of tissue and integrated   2023;10(36):e2304132.
               sensors. Adv Mater Technol. 2018;3(3):1700235.     doi: 10.1002/advs.202304132
               doi: 10.1002/admt.201700235
                                                               142. Zhu G, Dai H, Yao Y, et al. 3D printed skin‐inspired flexible
            130. Haghiashtiani G, Qiu K, Zhingre Sanchez JD, et al. 3D   pressure sensor with gradient porous structure for tunable
               printed patient-specific  aortic  root models with internal   high sensitivity and wide linearity range. Adv Mater Technol.
               sensors for minimally invasive applications.  Sci Adv.   2022;7(7):2101239.
               2020;6(35):eabb4641.                               doi: 10.1002/admt.202101239
               doi: 10.1126/sciadv.abb4641
                                                               143. Herbert R, Lim H-R, Rigo B, Yeo W-H. Fully implantable
            131. Said S, Boulkaibet I, Sheikh M, Karar AS, Alkork S, Nait-ali   wireless batteryless vascular electronics with printed soft
               A. Machine-learning-based muscle control of a 3D-printed   sensors for  multiplex  sensing  of  hemodynamics.  Sci Adv.
               bionic arm. Sensors. 2020;20(11):3144.             2022;8(19):eabm1175.
               doi: 10.3390/s20113144                             doi: 10.1126/sciadv.abm1175
            132.  Corona-Castuera J, Rodriguez-Delgado D, Henao J, Castro-  144. Chen C, Bai X, Ding Y, Lee I-S. Electrical stimulation as a
               Sandoval JC, Poblano-Salas CA. Design and fabrication of a   novel tool for regulating cell behavior in tissue engineering.
               customized partial hip prosthesis employing CT-scan data and   Biomater Res. 2019;23(1):1-12.
               lattice porous structures. ACS Omega. 2021;6(10):6902-6913.     doi: 10.1186/s40824-019-0176-8
               doi: 10.1021/acsomega.0c06144
                                                               145.  Bedir T, Ulag S, Aydogan K, et al. Effect of electric stimulus on
            133. Sang S, Pei Z, Zhang F, et al. Three-dimensional printed   human adipose‐derived mesenchymal stem cells cultured in
               bimodal electronic skin with high resolution and   3D‐printed scaffolds. Polym Adv Technol. 2021;32(3):1114-1125.
               breathability for hair growth.  ACS Appl Mater Interfaces.      doi: 10.1002/pat.5159
               2022;14(27):31493-31501.                        146. Lind JU, Busbee TA, Valentine AD, et al. Instrumented
               doi: 10.1021/acsami.2c09311
                                                                  cardiac microphysiological devices via multimaterial three-
            134. Gao H, An J, Chua CK, Bourell D, Kuo C-N, Tan DT. 3D   dimensional printing. Nat Mater. 2017;16(3):303-308.
               printed optics and photonics: processes, materials and      doi: 10.1038/nmat4782


            Volume 10 Issue 6 (2024)                       112                                doi: 10.36922/ijb.4139
   115   116   117   118   119   120   121   122   123   124   125