Page 120 - IJB-10-6
P. 120
International Journal of Bioprinting 3D-printed bioelectronic devices
123. Distler T, Boccaccini AR. 3D printing of electrically applications. Mater Today. 2023;69:107-132.
conductive hydrogels for tissue engineering and doi: 10.1016/j.mattod.2023.06.019
biosensors–a review. Acta Biomater. 2020;101:1-13. 135. Kong YL, Gupta MK, Johnson BN, McAlpine MC. 3D printed
doi: 10.1016/j.actbio.2019.08.044
bionic nanodevices. Nano Today. 2016;11(3):330-350.
124. Serafin A, Murphy C, Rubio MC, Collins MN. Printable doi: 10.1016/j.nantod.2016.04.007
alginate/gelatin hydrogel reinforced with carbon nanofibers 136. Mannoor MS, Jiang Z, James T, et al. 3D printed bionic ears.
as electrically conductive scaffolds for tissue engineering. Nano Lett. 2013;13(6):2634-2639.
Mater Sci Eng: C. 2021;122:111927. doi: 10.1021/nl4007744
doi: 10.1016/j.msec.2021.111927
137. Lu L, Zhang J, Xie Y, et al. Wearable health devices in health
125. Liu J, Garcia J, Leahy LM, et al. 3D printing of multifunctional care: narrative systematic review. JMIR mHealth uHealth.
conductive polymer composite hydrogels. Adv Funct Mater. 2020;8(11):e18907.
2023;33(37):2214196. doi: 10.2196/18907
doi: 10.1002/adfm.202214196
138. Ho DH, Hong P, Han JT, et al. 3D‐printed sugar scaffold
126. Deng Z, Hu T, Lei Q, He J, Ma PX, Guo B. Stimuli- for high‐precision and highly sensitive active and passive
responsive conductive nanocomposite hydrogels with high wearable sensors. Adv Sci. 2020;7(1):1902521.
stretchability, self-healing, adhesiveness, and 3D printability doi: 10.1002/advs.201902521
for human motion sensing. ACS Appl Mater Interfaces.
2019;11(7):6796-6808. 139. Ouyang X, Su R, Ng DWH, Han G, Pearson DR, McAlpine
doi: 10.1021/acsami.8b20178 MC. 3D printed skin-interfaced UV-visible hybrid
photodetectors. Adv Sci (Weinh). 2022;9(25):e2201275.
127. Qiu K, Haghiashtiani G, McAlpine MC. 3D printed organ doi: 10.1002/advs.202201275
models for surgical applications. Annu Rev Anal Chem (Palo
Alto Calif). 2018;11(1):287-306. 140. Wang Z, Gao W, Zhang Q, et al. 3D-printed graphene/
doi: 10.1146/annurev-anchem-061417-125935 polydimethylsiloxane composites for stretchable and strain-
insensitive temperature sensors. ACS Appl Mater Interfaces.
128. Mitsouras D, Liacouras P, Imanzadeh A, et al. Medical 3D 2019;11(1):1344-1352.
printing for the radiologist. Radiographics. 2015;35(7): doi: 10.1021/acsami.8b16139
1965-1988.
doi: 10.1148/rg.2015140320 141. Hou Y, Gao M, Gao J, et al. 3D printed conformal strain
and humidity sensors for human motion prediction and
129. Qiu K, Zhao Z, Haghiashtiani G, et al. 3D printed organ health monitoring via machine learning. Adv Sci (Weinh).
models with physical properties of tissue and integrated 2023;10(36):e2304132.
sensors. Adv Mater Technol. 2018;3(3):1700235. doi: 10.1002/advs.202304132
doi: 10.1002/admt.201700235
142. Zhu G, Dai H, Yao Y, et al. 3D printed skin‐inspired flexible
130. Haghiashtiani G, Qiu K, Zhingre Sanchez JD, et al. 3D pressure sensor with gradient porous structure for tunable
printed patient-specific aortic root models with internal high sensitivity and wide linearity range. Adv Mater Technol.
sensors for minimally invasive applications. Sci Adv. 2022;7(7):2101239.
2020;6(35):eabb4641. doi: 10.1002/admt.202101239
doi: 10.1126/sciadv.abb4641
143. Herbert R, Lim H-R, Rigo B, Yeo W-H. Fully implantable
131. Said S, Boulkaibet I, Sheikh M, Karar AS, Alkork S, Nait-ali wireless batteryless vascular electronics with printed soft
A. Machine-learning-based muscle control of a 3D-printed sensors for multiplex sensing of hemodynamics. Sci Adv.
bionic arm. Sensors. 2020;20(11):3144. 2022;8(19):eabm1175.
doi: 10.3390/s20113144 doi: 10.1126/sciadv.abm1175
132. Corona-Castuera J, Rodriguez-Delgado D, Henao J, Castro- 144. Chen C, Bai X, Ding Y, Lee I-S. Electrical stimulation as a
Sandoval JC, Poblano-Salas CA. Design and fabrication of a novel tool for regulating cell behavior in tissue engineering.
customized partial hip prosthesis employing CT-scan data and Biomater Res. 2019;23(1):1-12.
lattice porous structures. ACS Omega. 2021;6(10):6902-6913. doi: 10.1186/s40824-019-0176-8
doi: 10.1021/acsomega.0c06144
145. Bedir T, Ulag S, Aydogan K, et al. Effect of electric stimulus on
133. Sang S, Pei Z, Zhang F, et al. Three-dimensional printed human adipose‐derived mesenchymal stem cells cultured in
bimodal electronic skin with high resolution and 3D‐printed scaffolds. Polym Adv Technol. 2021;32(3):1114-1125.
breathability for hair growth. ACS Appl Mater Interfaces. doi: 10.1002/pat.5159
2022;14(27):31493-31501. 146. Lind JU, Busbee TA, Valentine AD, et al. Instrumented
doi: 10.1021/acsami.2c09311
cardiac microphysiological devices via multimaterial three-
134. Gao H, An J, Chua CK, Bourell D, Kuo C-N, Tan DT. 3D dimensional printing. Nat Mater. 2017;16(3):303-308.
printed optics and photonics: processes, materials and doi: 10.1038/nmat4782
Volume 10 Issue 6 (2024) 112 doi: 10.36922/ijb.4139

