Page 117 - IJB-10-6
P. 117

International Journal of Bioprinting                                      3D-printed bioelectronic devices




            48.  Remaggi G, Zaccarelli A, Elviri L. 3D printing technologies in   printing and ultrasonic cavitation-enabled treatment. Sens
               biosensors production: recent developments. Chemosensors.   Actuators A: Phys. 2022;340:113526.
               2022;10(2):65.                                     doi: 10.1016/j.sna.2022.113526
               doi: 10.3390/chemosensors10020065
                                                               61.  Ma C, Zhu B, Qian Z, Ren L, Yuan H, Meng Y. 3D-printing of
            49.  Huang J, Qin Q, Wang J. A review of stereolithography:   conductive inks based flexible tactile sensor for monitoring
               processes and systems. Processes. 2020;8(9):1138.  of temperature, strain and pressure.  J  Manuf  Processes.
               doi: 10.3390/pr8091138                             2023;87:1-10.
                                                                  doi: 10.1016/j.jmapro.2023.01.008
            50.  Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X. Photo-curing
               3D printing technique and its challenges.  Bioact Mater.   62.  Park SH, Su R, Jeong J, et al. 3D printed polymer
               2020;5(1):110-115.                                 photodetectors. Adv Mater. 2018;30(40):1803980.
               doi: 10.1016/j.bioactmat.2019.12.003               doi: 10.1002/adma.201803980
            51.  Song Q, Chen Y, Hou P, et al. Fabrication of multi-  63.  Zhu Z, Park HS, McAlpine MC. 3D printed deformable
               material pneumatic actuators and microactuators using   sensors. Sci Adv. 2020;6(25):eaba5575.
               stereolithography. Micromachines. 2023;14(2):244.     doi: 10.1126/sciadv.aba5575
               doi: 10.3390/mi14020244                         64.  Schouten M, Wolterink G, Dijkshoorn A, Kosmas D,
            52.  Pagac M, Hajnys J, Ma Q-P, et al. A review of vat   Stramigioli S, Krijnen G. A review of extrusion-based 3d
               photopolymerization technology: materials, applications,   printing for the fabrication of electro-and biomechanical
               challenges,  and  future  trends  of  3D  printing.  Polymers.   sensors. IEEE Sens J. 2020;21(11):12900-12912.
               2021;13(4):598.                                    doi: 10.1109/JSEN.2020.3042436
               doi: 10.3390/polym13040598                      65.  Saadi MASR, Maguire A, Pottackal NT, et al. Direct ink
            53.  Peng X, Kuang X, Roach DJ, et al. Integrating digital   writing: A 3D printing technology for diverse materials.
               light processing with direct ink writing for hybrid 3D   Adv Mater. 2022;34(28):2108855.
               printing of functional structures and devices. Addit Manuf.      doi: 10.1002/adma.201707495
               2021;40:101911.                                 66.  Wei P, Leng H, Chen Q, Advincula RC, Pentzer EB.
               doi: 10.1016/j.addma.2021.101911                   Reprocessable  3D-printed  conductive  elastomeric
            54.  Liu M, Zhang Q, Shao Y, Liu C, Zhao Y. Research of a novel   composite foams for strain and gas sensing. ACS Appl Polym
               3D printed strain gauge type force sensor. Micromachines.   Mater. 2019;1(4):885-892.
               2018;10(1):20.                                     doi: 10.1021/acsapm.9b00118
               doi: 10.3390/mi10010020                         67.  Huang K, Dong S, Yang J, et al. Three-dimensional printing
            55.  Kim NP, Eo J-S, Cho D. Optimization of piston type   of a tunable graphene-based elastomer for strain sensors
               extrusion (PTE) techniques for 3D printed food. J Food Eng.   with ultrahigh sensitivity. Carbon. 2019;143:63-72.
               2018;235:41-49.                                    doi: 10.1016/j.carbon.2018.11.008
               doi: 10.1016/j.jfoodeng.2018.04.019             68.  Baker DV, Bao C, Kim WS. Highly conductive 3D printable
            56.  Valkenaers H, Vogeler F, Voet A, Kruth J-P. Screw Extrusion   materials for 3D structural electronics. ACS Appl Electron
               Based 3D Printing, A Novel Additive Manufacturing   Mater. 2021;3(6):2423-2433.
               Technology. University of Stellenbosch: Stellenbosch;      doi: 10.1021/acsaelm.1c00296
               2013:97-103.                                    69.  Neumann TV, Dickey MD. Liquid metal direct write
            57.  Seoane-Viaño I, Januskaite P, Alvarez-Lorenzo C, Basit   and 3D printing: a review.  Adv Mater Technol. 2020;5(9):
               AW, Goyanes A.  Semi-solid extrusion 3D  printing in   2000070.
               drug delivery and biomedicine: personalised solutions for      doi: 10.1002/admt.202000070
               healthcare challenges. J Control Release. 2021;332:367-389.  70.  Tan  HW,  An  J,  Chua  CK,  Tran  T.  Metallic  nanoparticle
               doi: 10.1016/j.jconrel.2021.02.027                 inks for 3D printing of electronics.  Adv  Electronic  Mater.
            58.  Tetsuka H, Shin SR. Materials and technical innovations in   2019;5(5):1800831.
               3D printing in biomedical applications.  J Mater Chem B.      doi: 10.1002/aelm.201800831
               2020;8(15):2930-2950.                           71.  Zou Z, Chen Y, Yuan S, Luo N, Li J, He Y. 3D printing of
               doi: 10.1039/D0TB00034E                            liquid  metals:  recent  advancements  and  challenges.  Adv
            59.  Dababneh AB, Ozbolat IT. Bioprinting technology: a current   Funct Mater. 2023;33(10):2213312.
               state-of-the-art review. J Manuf Sci Eng. 2014;136(6):061016.     doi: 10.1002/adfm.202213312
               doi: 10.1115/1.4028512                          72.  Chen R.  Liquid Metal Based Flexible Pressure Sensor for
                                                                  Tactile Sensing of Robots. IOP Publishing; 2021:052025.
            60.  Li B, Liang W, Zhang L, Ren F, Xuan F. TPU/CNTs flexible
               strain sensor with auxetic structure via a novel hybrid      doi: 10.1088/1742-6596/1885/5/052025
               manufacturing process of fused deposition modeling 3D   73.  Cook A, Parekh DP, Ladd C, et al. Shear‐driven direct‐write

            Volume 10 Issue 6 (2024)                       109                                doi: 10.36922/ijb.4139
   112   113   114   115   116   117   118   119   120   121   122