Page 115 - IJB-10-6
P. 115

International Journal of Bioprinting                                      3D-printed bioelectronic devices




            References                                         12.  Bao G, Yang P, Yi J, et al. Full-sized realistic 3D printed
                                                                  models of liver and tumour anatomy: a useful tool for the
            1.   Xu L, Qin H, Tan J, et al. Clinical study of 3D printed   clinical medicine education of beginning trainees.  BMC
               personalized prosthesis in the treatment of bone defect after   Med Educ. 2023;23(1):574.
               pelvic tumor resection. J Orthop Translat. 2021;29:163-169.     doi: 10.1186/s12909-023-04535-3
               doi: 10.1016/j.jot.2021.05.007                  13.  Fu H, Zhang D, Zeng J, et al. Application of 3D-printed
            2.   Tejo-Otero A, Lustig-Gainza P, Fenollosa-Artés F, Valls A,   tissue-engineered skin  substitute using innovative
               Krauel L, Buj-Corral I. 3D printed soft surgical planning   biomaterial loaded with human adipose-derived stem cells
               prototype  for a biliary tract rhabdomyosarcoma.  J Mech   in wound healing. Int J Bioprint. 2023;9(2):674.
               Behav Biomed Mater. 2020;109:103844.               doi: 10.18063/ijb.v9i2.674
               doi: 10.1016/j.jmbbm.2020.103844                14.  Zhu Z, Guo SZ, Hirdler T, et al. 3D printed functional and
            3.   Uhl JF, Sufianov A, Ruiz C, et al. The use of 3D printed models   biological materials on moving freeform surfaces.  Adv
               for surgical simulation of cranioplasty in craniosynostosis as   Mater. 2018;30(23):e1707495.
               training and education. Brain Sci. 2023;13(6):894.     doi: 10.1002/adma.201707495
               doi: 10.3390/brainsci13060894                   15.  Guo X, Li H, Hong W, et al. 3D printed fourth-order star-like
            4.   Wang F, Xue Y, Chen X, et al. 3D printed implantable   negative poisson’s ratio structure for high-sensitivity bionic
               hydrogel  bioelectronics  for  electrophysiological  flexible capacitive pressure sensor. IEEE Sens J. 2024;24(9)
               monitoring and electrical modulation.  Adv Funct Mater.   13937-13945.
               2024;34(21):2314471.                               doi: 10.1109/JSEN.2024.3374304
               doi: 10.1002/adfm.202314471
                                                               16.  He Q, Zeng Y, Jiang L, et al. Growing recyclable and
            5.   Krishnadoss V, Kanjilal B, Hesketh A, et al. In situ 3D   healable piezoelectric composites in 3D printed bioinspired
               printing of implantable energy storage devices. Chem Eng J.   structure for protective wearable sensor.  Nat Commun.
               2021;409:128213.                                   2023;14(1):6477.
               doi: 10.1016/j.cej.2020.128213                     doi: 10.1038/s41467-023-41740-6
            6.   Picco CJ, Domínguez-Robles J, Utomo E, et al. 3D-printed   17.  Wei J, Xie J, Zhang P, et al. Bioinspired 3D printable,
               implantable devices with biodegradable rate-controlling   self-healable, and stretchable hydrogels with multiple
               membrane for sustained delivery of hydrophobic drugs.   conductivities for skin-like wearable strain sensors.  ACS
               Drug Deliv. 2022;29(1):1038-1048.                  Appl Mater Interfaces. 2021;13(2):2952-2960.
               doi: 10.1080/10717544.2022.2057620                 doi: 10.1021/acsami.0c19512
            7.   Yi Q, Najafikhoshnoo S, Das P, et al. All‐3D‐printed, flexible,   18.  Jain K, Wang Z, Garma LD, et al. 3D printable composites
               and hybrid wearable bioelectronic tactile sensors using   of modified cellulose fibers and conductive polymers
               biocompatible nanocomposites for health monitoring. Adv   and their use in wearable electronics.  Appl  Mater Today.
               Mater Technol. 2022;7(5):2101034.                  2023;30:101703.
               doi: 10.1002/admt.202101034                        doi: 10.1016/j.apmt.2022.101703
            8.   Tang Z, Jia S, Zhou C, Li B. 3D printing of highly sensitive   19.  Yu J, Tian F, Wang W, et al. Design of highly conductive,
               and large-measurement-range flexible pressure sensors with   intrinsically stretchable, and 3D printable PEDOT: PSS
               a positive piezoresistive effect. ACS Appl Mater Interfaces.   hydrogels via PSS-chain engineering for bioelectronics.
               2020;12(25):28669-28680.                           Chem Mater. 2023;35(15):5936-5944.
               doi: 10.1021/acsami.0c06977                        doi: 10.1021/acs.chemmater.3c00844
            9.   Davoodi E, Montazerian H, Haghniaz R, et al. 3D-printed   20.  Peng S, Li Y, Wu L, et al. 3D printing mechanically robust
               ultra-robust surface-doped porous silicone sensors for   and transparent polyurethane elastomers for stretchable
               wearable biomonitoring. ACS Nano. 2020;14(2):1520-1532.  electronic sensors.  ACS Appl Mater Interfaces. 2020;
               doi: 10.1021/acsnano.9b06283                       12(5):6479-6488
                                                                  doi: 10.1021/acsami.9b20631
            10.  Kwon Y-T, Kim Y-S, Kwon S, et al. All-printed nanomembrane
               wireless bioelectronics using a biocompatible solderable   21.  Tan P, Xi Y, Chao S, et al. An artificial intelligence-enhanced
               graphene for multimodal human-machine interfaces.  Nat   blood pressure monitor wristband based on piezoelectric
               Commun. 2020;11(1):3450.                           nanogenerator. Biosensors. 2022;12(4):234.
               doi: 10.1038/s41467-020-17288-0                    doi: 10.3390/bios12040234
            11.  Yan  W-C,  Davoodi  P,  Vijayavenkataraman  S,  et  al.  3D   22.  Kim B, Jang S, Geier ML, Prabhumirashi PL, Hersam
               bioprinting of skin tissue: from pre-processing to final   MC, Dodabalapur A. High-speed, inkjet-printed carbon
               product evaluation.  Adv Drug Deliv Rev. 2018;132:   nanotube/zinc tin oxide hybrid complementary ring
               270-295.                                           oscillators. Nano Lett. 2014;14(6):3683-3687.
               doi: 10.1016/j.addr.2018.07.016                    doi: 10.1021/nl5016014

            Volume 10 Issue 6 (2024)                       107                                doi: 10.36922/ijb.4139
   110   111   112   113   114   115   116   117   118   119   120