Page 251 - IJB-10-6
P. 251
International Journal of Bioprinting DIW of concave hydroxyapatite scaffolds
enhances bone formation in vivo: a comparison doi: 10.1016/j.ceramint.2015.06.069
with biomimetic treatment. Acta Biomater. 20221; 51. Minas C, Carnelli D, Tervoort E, Studart AR. 3D printing of
135:671-688. emulsions and foams into hierarchical porous ceramics. Adv
doi: 10.1016/j.actbio.2021.09.001
Mater. 2016;28:9993-9999.
40. Raymond Y, Thorel E, Liversain M, Riveiro A, Pou J, Ginebra doi: 10.1002/adma.201603390
MP. 3D printing non-cylindrical strands: morphological 52. Ginebra MP, Fernández E, De Maeyer, et al. Setting reaction
and structural implications. Addit Manuf. 2021;46: 102129. and hardening of an apatitic calcium phosphate cement. J
doi: 10.1016/j.addma.2021.102129 Dent Res. 1997;76:905-912.
41. Moreno Madrid AP, Vrech SM, Sanchez MA, Rodriguez doi: 10.1177/00220345970760041201
AP. Advances in additive manufacturing for bone tissue 53. Brookshier KA, Tarbell JM. Evaluation of a transparent blood
engineering scaffolds. Mater Sci Eng C. 2019;100: 631-644. analog fluid: aqueous Xanthan gum/glycerin. Biorheology.
doi: 10.1016/j.msec.2019.03.037 1993;30:107-116.
42. Roopavath UK, Malferrari S, Van Haver A, Verstreken SM, doi: 10.3233/BIR-1993-30202
Rath SN, Kalaskar DM. Optimization of extrusion based 54. Chan SSL, Sesso ML, Franks GV. Direct ink writing of
ceramic 3D printing process for complex bony designs. hierarchical porous alumina-stabilized emulsions: rheology
Mater Des. 2019;162:263-270. and printability. J Am Ceram Soc. 2020;103:5554-5566.
doi: 10.1016/j.matdes.2018.11.054 doi: 10.1111/jace.17305
43. Shao H, He J, Lin T, Zhang Z, Zhang Y, Liu S. 3D gel-printing 55. Seoane-Viaño I, Januskaite P, Alvarez-Lorenzo C, Basit
of hydroxyapatite scaffold for bone tissue engineering. AW, Goyanes A. Semi-solid extrusion 3D printing in
Ceram Int. 2019;45:1163-1170. drug delivery and biomedicine: personalised solutions for
doi: 10.1016/j.ceramint.2018.09.300 healthcare challenges. J Control Release. 2021;332:367-389.
44. Wang Y, Chen S, Liang H, Liu Y, Bai J, Wang M. Digital doi: 10.1016/j.jconrel.2021.02.027
light processing (DLP) of nano biphasic calcium phosphate 56. Franco ESJ, Hunger P, Launey ME, Tomsia AP. Direct-write
bioceramic for making bone tissue engineering scaffolds. assembly of calcium phosphate scaffolds using a water-based
Ceram Int. 2022;48:27681-27692. hydrogel. Acta Biomater. 2010;6:218-228.
doi: 10.1016/j.ceramint.2022.06.067 doi: 10.1016/j.actbio.2009.06.031.Direct-Write
45. Navarrete-Segado P, Tourbin M, Frances C, Grossin D. 57. Mys K, Varga P, Stockmans F, et al. Quantification of 3D
Masked stereolithography of hydroxyapatite bioceramic microstructural parameters of trabecular bone is affected by
scaffolds: from powder tailoring to evaluation of 3D printed the analysis software. Bone. 2021;142:115653.
parts properties. Open Ceram. 2022;9:100235. doi: 10.1016/j.bone.2020.115653
doi: 10.1016/j.oceram.2022.100235
58. Maazouz Y, Montufar EB, Malbert J, Espanol M, Ginebra
46. Ginebra M-P, Espanol M, Maazouz Y, Bergez V, Pastorino MP. Self-hardening and thermoresponsive alpha tricalcium
D. Bioceramics and bone healing. EFORT Open Rev. phosphate/pluronic pastes. Acta Biomater. 2017;49:563-574.
2018;3:173-183. doi: 10.1016/j.actbio.2016.11.043
doi: 10.1302/2058-5241.3.170056
59. Barba A, Maazouz Y, Diez-Escudero A, et al. Osteogenesis by
47. Vidal L, Kampleitner C, Krissian S, et al. Regeneration of foamed and 3D-printed nanostructured calcium phosphate
segmental defects in metatarsus of sheep with vascularized scaffolds: effect of pore architecture. Acta Biomater.
and customized 3D-printed calcium phosphate scaffolds. Sci 2018;79:135-147.
Rep. 2020;10:7068. doi: 10.1016/j.actbio.2018.09.003
doi: 10.1038/s41598-020-63742-w
60. Anastasiou AD, Spyrogianni AS, Koskinas KC, Giannoglou
48. Feng C, Zhang W, Deng C, et al. 3D printing of lotus GD, Paras SV. Experimental investigation of the flow of a
root-like biomimetic materials for cell delivery and tissue blood analogue fluid in a replica of a bifurcated small artery.
regeneration. Adv Sci (Weinh). 2017;4(12):1700401. Med Eng Phys. 2012;34(2):211-218.
doi: 10.1002/advs.201700401 doi: 10.1016/j.medengphy.2011.07.012
49. Raymond Y, Lehmann C, Thorel E, et al. 3D printing with 61. Webb L. Mimicking blood rheology for more accurate
star-shaped strands: a new approach to enhance in vivo modeling in benchtop research. Pegasus Rev UCF Undergrad
bone regeneration. Biomater Adv. 2022;137:12807. Res J. 2020;12:28-34.
doi: 10.1016/j.bioadv.2022.212807 https://stars.library.ucf.edu/urj/vol12/iss1/6
50 Moon YW, Choi IJ, Koh YH, Kim C. Porous alumina ceramic 62. Alves MM, Rocha C, Gonçalves MP. Study of the rheological
scaffolds with biomimetic macro/micro-porous structure behaviour of human blood using a controlled stress
using three-dimensional (3-D) ceramic/camphene-based rheometer. Clin Hemorheol Microcirc. 2013;53:369-386.
extrusion. Ceram Int. 2015;41:12371-12377. doi: 10.3233/ch-121645
Volume 10 Issue 6 (2024) 243 doi: 10.36922/ijb.3805

