Page 251 - IJB-10-6
P. 251

International Journal of Bioprinting                                DIW of concave hydroxyapatite scaffolds




               enhances bone formation in vivo: a comparison      doi: 10.1016/j.ceramint.2015.06.069
               with biomimetic treatment.  Acta Biomater. 20221;   51.  Minas C, Carnelli D, Tervoort E, Studart AR. 3D printing of
               135:671-688.                                       emulsions and foams into hierarchical porous ceramics. Adv
               doi: 10.1016/j.actbio.2021.09.001
                                                                  Mater. 2016;28:9993-9999.
            40.  Raymond Y, Thorel E, Liversain M, Riveiro A, Pou J, Ginebra      doi: 10.1002/adma.201603390
               MP. 3D printing non-cylindrical strands: morphological   52.  Ginebra MP, Fernández E, De Maeyer, et al. Setting reaction
               and structural implications. Addit Manuf. 2021;46: 102129.  and hardening of an apatitic calcium phosphate cement. J
               doi: 10.1016/j.addma.2021.102129                   Dent Res. 1997;76:905-912.
            41.  Moreno  Madrid  AP,  Vrech  SM,  Sanchez  MA,  Rodriguez      doi: 10.1177/00220345970760041201
               AP. Advances in additive manufacturing for bone tissue   53.  Brookshier KA, Tarbell JM. Evaluation of a transparent blood
               engineering scaffolds. Mater Sci Eng C. 2019;100: 631-644.  analog fluid: aqueous Xanthan gum/glycerin.  Biorheology.
               doi: 10.1016/j.msec.2019.03.037                    1993;30:107-116.
            42.  Roopavath UK, Malferrari S, Van Haver A, Verstreken SM,      doi: 10.3233/BIR-1993-30202
               Rath SN, Kalaskar DM. Optimization of extrusion based   54.  Chan SSL, Sesso ML, Franks GV. Direct ink writing of
               ceramic  3D printing  process for complex bony designs.   hierarchical porous alumina-stabilized emulsions: rheology
               Mater Des. 2019;162:263-270.                       and printability. J Am Ceram Soc. 2020;103:5554-5566.
               doi: 10.1016/j.matdes.2018.11.054                  doi: 10.1111/jace.17305
            43.  Shao H, He J, Lin T, Zhang Z, Zhang Y, Liu S. 3D gel-printing   55.  Seoane-Viaño I, Januskaite P, Alvarez-Lorenzo C, Basit
               of hydroxyapatite scaffold for bone tissue engineering.   AW, Goyanes A.  Semi-solid extrusion 3D  printing in
               Ceram Int. 2019;45:1163-1170.                      drug delivery and biomedicine: personalised solutions for
               doi: 10.1016/j.ceramint.2018.09.300                healthcare challenges. J Control Release. 2021;332:367-389.
            44.  Wang Y, Chen S, Liang H, Liu Y, Bai J, Wang  M. Digital      doi: 10.1016/j.jconrel.2021.02.027
               light processing (DLP) of nano biphasic calcium phosphate   56.  Franco ESJ, Hunger P, Launey ME, Tomsia AP. Direct-write
               bioceramic for making bone tissue engineering scaffolds.   assembly of calcium phosphate scaffolds using a water-based
               Ceram Int. 2022;48:27681-27692.                    hydrogel. Acta Biomater. 2010;6:218-228.
               doi: 10.1016/j.ceramint.2022.06.067                doi: 10.1016/j.actbio.2009.06.031.Direct-Write
            45.  Navarrete-Segado  P,  Tourbin  M,  Frances  C,  Grossin  D.   57.  Mys K, Varga P, Stockmans F, et al. Quantification of 3D
               Masked stereolithography of hydroxyapatite bioceramic   microstructural parameters of trabecular bone is affected by
               scaffolds: from powder tailoring to evaluation of 3D printed   the analysis software. Bone. 2021;142:115653.
               parts properties. Open Ceram. 2022;9:100235.       doi: 10.1016/j.bone.2020.115653
               doi: 10.1016/j.oceram.2022.100235
                                                               58.  Maazouz Y, Montufar EB, Malbert J, Espanol M, Ginebra
            46.  Ginebra M-P, Espanol M, Maazouz Y, Bergez V, Pastorino   MP. Self-hardening and thermoresponsive alpha tricalcium
               D. Bioceramics and bone healing.  EFORT Open Rev.   phosphate/pluronic pastes. Acta Biomater. 2017;49:563-574.
               2018;3:173-183.                                    doi: 10.1016/j.actbio.2016.11.043
               doi: 10.1302/2058-5241.3.170056
                                                               59.  Barba A, Maazouz Y, Diez-Escudero A, et al. Osteogenesis by
            47.  Vidal L, Kampleitner C, Krissian S, et al. Regeneration of   foamed and 3D-printed nanostructured calcium phosphate
               segmental defects in metatarsus of sheep with vascularized   scaffolds: effect of pore architecture.  Acta Biomater.
               and customized 3D-printed calcium phosphate scaffolds. Sci   2018;79:135-147.
               Rep. 2020;10:7068.                                 doi: 10.1016/j.actbio.2018.09.003
               doi: 10.1038/s41598-020-63742-w
                                                               60.  Anastasiou AD, Spyrogianni AS, Koskinas KC, Giannoglou
            48.  Feng C, Zhang W, Deng C, et al. 3D printing of lotus   GD, Paras SV. Experimental investigation of the flow of a
               root-like biomimetic materials for cell delivery and tissue   blood analogue fluid in a replica of a bifurcated small artery.
               regeneration. Adv Sci (Weinh). 2017;4(12):1700401.  Med Eng Phys. 2012;34(2):211-218.
               doi: 10.1002/advs.201700401                        doi: 10.1016/j.medengphy.2011.07.012
            49.  Raymond Y, Lehmann C, Thorel E, et al. 3D printing with   61.  Webb L. Mimicking blood rheology for more accurate
               star-shaped strands: a new approach to enhance in vivo   modeling in benchtop research. Pegasus Rev UCF Undergrad
               bone regeneration. Biomater Adv. 2022;137:12807.   Res J. 2020;12:28-34.
               doi: 10.1016/j.bioadv.2022.212807                  https://stars.library.ucf.edu/urj/vol12/iss1/6
            50  Moon YW, Choi IJ, Koh YH, Kim C. Porous alumina ceramic   62.  Alves MM, Rocha C, Gonçalves MP. Study of the rheological
               scaffolds  with  biomimetic  macro/micro-porous  structure   behaviour of human blood using a controlled stress
               using three-dimensional (3-D) ceramic/camphene-based   rheometer. Clin Hemorheol Microcirc. 2013;53:369-386.
               extrusion. Ceram Int. 2015;41:12371-12377.         doi: 10.3233/ch-121645


            Volume 10 Issue 6 (2024)                       243                                doi: 10.36922/ijb.3805
   246   247   248   249   250   251   252   253   254   255   256