Page 249 - IJB-10-6
P. 249

International Journal of Bioprinting                                DIW of concave hydroxyapatite scaffolds




            Methodology: Laura del-Mazo-Barbara, Anna Diez-    7.   Bohner M, Baroud G, Bernstein A, et al. Characterization
               Escudero                                           and distribution of mechanically competent mineralized
            Writing - original draft: Laura del-Mazo-Barbara.     tissue in micropores of β-tricalcium phosphate bone
            Writing - review & editing: Anna Diez-Escudero, Irene   substitutes. Mater Today. 2017;20:106-115.
               Lodoso-Torrecilla, Morteza Aramesh, Cecilia Persson,      doi: 10.1016/j.mattod.2017.02.002
               Maria-Pau Ginebra                               8.   Graziano A, D’Aquino R, Angelis MGC-D, et al. Scaffold’s
                                                                  surface geometry significantly affects human stem cell bone
            Ethics approval and consent to participate            tissue engineering. J Cell Physiol. 2008;214:166-172.
                                                                  doi: 10.1002/jcp.21175
            Not applicable
                                                               9.   Barba A, Diez-Escudero A, Maazouz Y, et al. Osteoinduction
            Consent for publication                               by foamed and 3D-printed calcium phosphate scaffolds:
                                                                  effect of nanostructure and pore architecture.  ACS Appl
            Not applicable                                        Mater Interfaces. 2017;9:41722-41736.
                                                                  doi: 10.1021/acsami.7b14175
            Availability of data                               10.  Barba A, Diez-Escudero Y, Espanol M, et al. Impact of
                                                                  biomimicry in the design of osteoinductive bone substitutes:
            All reported data are available upon reasonable request to   nanoscale  matters.  ACS Appl Mater Interfaces.  2019;
            the corresponding author.                             11:8818–8830.
                                                                  doi: 10.1021/acsami.8b20749
            Further disclosure
                                                               11.  Ginebra MP, Espanol M, Montufar EB, Perez RA, Mestres G.
            Part of this work was presented in the 2022 Young     New processing approaches in calcium phosphate cements
            Ceramist Additive Manufacturing (yCAM) forum and      and their applications in regenerative medicine.  Acta
            the 33  Annual Conference of the European Society for   Biomater. 2010;6:2863-2873.
                 rd
            Biomaterials (ESB 2023).                              doi: 10.1016/J.ACTBIO.2010.01.036
                                                               12.  Jinnai H, Watashiba H, Kajihara T, Nishikawa Y,
            References                                            Takahashi M, Ito M. Surface curvatures of trabecular bone
                                                                  microarchitecture. Bone. 2002;30:191-194.
            1.   Kalita SJ, Bose S, Hosick HL, Bandyopadhyay A.      doi: 10.1016/S8756-3282(01)00672-X
               Development of controlled porosity polymer-ceramic
               composite scaffolds via fused deposition modeling.  Mater   13.  Shen M, Li Y, Lu F, et al. Bioceramic scaffolds with triply
               Sci Eng C. 2003;23:611-620.                        periodic minimal surface architectures guide early-stage
               doi: 10.1016/S0928-4931(03)00052-3                 bone regeneration. Bioact Mater. 2023;25:374-386.
                                                                  doi: 10.1016/j.bioactmat.2023.02.012
            2.   Bohner M, Galea L, Doebelin N. Calcium phosphate bone
               graft substitutes: failures and hopes.  J Eur Ceram Soc.   14.  Blanquer SBG, Werner M, Hannula M, et al. Surface
               2012;32:2663-2671.                                 curvature in triply-periodic minimal surface architectures
               doi: 10.1016/j.jeurceramsoc.2012.02.028            as a distinct design parameter in preparing advanced tissue
                                                                  engineering scaffolds. Biofabrication. 2017;9:025001.
            3.   Perez  RA,  Mestres  G.  Role  of  pore  size  and  morphology      doi: 10.1088/1758-5090/aa6553
               in musculo-skeletal tissue regeneration.  Mater Sci Eng C.
               2016;61:922-939.                                15.  Restrepo S, Ocampo S, Ramirez JA, Paucar C, Garcia C.
               doi: 10.1016/J.MSEC.2015.12.087                    Mechanical properties of ceramic structures based on Triply
                                                                  Periodic Minimal Surface (TPMS) processed by 3D printing.
            4.   Habraken W, Habibovic P, Epple M, Bohner M. Calcium   J Phys Conf Ser. 2017;935:0-6.v
               phosphates in biomedical applications: materials for the      doi: 10.1088/1742-6596/935/1/012036
               future? Mater Today. 2016;19:69-87.             16.  Montazerian H, Mohamed MGA, Montazeri MM,
               doi: 10.1016/J.MATTOD.2015.10.008
                                                                  et al. Permeability and mechanical properties of gradient
            5.   Bose S, Vahabzadeh S, Bandyopadhyay A. Bone      porous PDMS scaffolds fabricated by 3D-printed sacrificial
               tissue engineering using 3D printing.  Mater  Today.   templates designed with minimal surfaces. Acta Biomater.
               2013;16:496-504.                                   2019;96:149-160.
               doi: 10.1016/J.MATTOD.2013.11.017                  doi: 10.1016/j.actbio.2019.06.040
            6.   Thavornyutikarn B, Chantarapanich N, Sitthiseripratip K,   17.  Montazerian H, Zhianmanesh M, Davoodi E, Milani AS,
               Thouas GA, Chen Q. Bone tissue engineering scaffolding:   Hoorfar M. Longitudinal and radial permeability analysis
               computer-aided scaffolding techniques.  Prog Biomater.   of additively manufactured porous scaffolds: effect of pore
               2014;3:61-102.                                     shape and porosity. Mater Des. 2017;122:146-156.
               doi: 10.1007/s40204-014-0026-7                     doi: 10.1016/j.matdes.2017.03.006


            Volume 10 Issue 6 (2024)                       241                                doi: 10.36922/ijb.3805
   244   245   246   247   248   249   250   251   252   253   254