Page 249 - IJB-10-6
P. 249
International Journal of Bioprinting DIW of concave hydroxyapatite scaffolds
Methodology: Laura del-Mazo-Barbara, Anna Diez- 7. Bohner M, Baroud G, Bernstein A, et al. Characterization
Escudero and distribution of mechanically competent mineralized
Writing - original draft: Laura del-Mazo-Barbara. tissue in micropores of β-tricalcium phosphate bone
Writing - review & editing: Anna Diez-Escudero, Irene substitutes. Mater Today. 2017;20:106-115.
Lodoso-Torrecilla, Morteza Aramesh, Cecilia Persson, doi: 10.1016/j.mattod.2017.02.002
Maria-Pau Ginebra 8. Graziano A, D’Aquino R, Angelis MGC-D, et al. Scaffold’s
surface geometry significantly affects human stem cell bone
Ethics approval and consent to participate tissue engineering. J Cell Physiol. 2008;214:166-172.
doi: 10.1002/jcp.21175
Not applicable
9. Barba A, Diez-Escudero A, Maazouz Y, et al. Osteoinduction
Consent for publication by foamed and 3D-printed calcium phosphate scaffolds:
effect of nanostructure and pore architecture. ACS Appl
Not applicable Mater Interfaces. 2017;9:41722-41736.
doi: 10.1021/acsami.7b14175
Availability of data 10. Barba A, Diez-Escudero Y, Espanol M, et al. Impact of
biomimicry in the design of osteoinductive bone substitutes:
All reported data are available upon reasonable request to nanoscale matters. ACS Appl Mater Interfaces. 2019;
the corresponding author. 11:8818–8830.
doi: 10.1021/acsami.8b20749
Further disclosure
11. Ginebra MP, Espanol M, Montufar EB, Perez RA, Mestres G.
Part of this work was presented in the 2022 Young New processing approaches in calcium phosphate cements
Ceramist Additive Manufacturing (yCAM) forum and and their applications in regenerative medicine. Acta
the 33 Annual Conference of the European Society for Biomater. 2010;6:2863-2873.
rd
Biomaterials (ESB 2023). doi: 10.1016/J.ACTBIO.2010.01.036
12. Jinnai H, Watashiba H, Kajihara T, Nishikawa Y,
References Takahashi M, Ito M. Surface curvatures of trabecular bone
microarchitecture. Bone. 2002;30:191-194.
1. Kalita SJ, Bose S, Hosick HL, Bandyopadhyay A. doi: 10.1016/S8756-3282(01)00672-X
Development of controlled porosity polymer-ceramic
composite scaffolds via fused deposition modeling. Mater 13. Shen M, Li Y, Lu F, et al. Bioceramic scaffolds with triply
Sci Eng C. 2003;23:611-620. periodic minimal surface architectures guide early-stage
doi: 10.1016/S0928-4931(03)00052-3 bone regeneration. Bioact Mater. 2023;25:374-386.
doi: 10.1016/j.bioactmat.2023.02.012
2. Bohner M, Galea L, Doebelin N. Calcium phosphate bone
graft substitutes: failures and hopes. J Eur Ceram Soc. 14. Blanquer SBG, Werner M, Hannula M, et al. Surface
2012;32:2663-2671. curvature in triply-periodic minimal surface architectures
doi: 10.1016/j.jeurceramsoc.2012.02.028 as a distinct design parameter in preparing advanced tissue
engineering scaffolds. Biofabrication. 2017;9:025001.
3. Perez RA, Mestres G. Role of pore size and morphology doi: 10.1088/1758-5090/aa6553
in musculo-skeletal tissue regeneration. Mater Sci Eng C.
2016;61:922-939. 15. Restrepo S, Ocampo S, Ramirez JA, Paucar C, Garcia C.
doi: 10.1016/J.MSEC.2015.12.087 Mechanical properties of ceramic structures based on Triply
Periodic Minimal Surface (TPMS) processed by 3D printing.
4. Habraken W, Habibovic P, Epple M, Bohner M. Calcium J Phys Conf Ser. 2017;935:0-6.v
phosphates in biomedical applications: materials for the doi: 10.1088/1742-6596/935/1/012036
future? Mater Today. 2016;19:69-87. 16. Montazerian H, Mohamed MGA, Montazeri MM,
doi: 10.1016/J.MATTOD.2015.10.008
et al. Permeability and mechanical properties of gradient
5. Bose S, Vahabzadeh S, Bandyopadhyay A. Bone porous PDMS scaffolds fabricated by 3D-printed sacrificial
tissue engineering using 3D printing. Mater Today. templates designed with minimal surfaces. Acta Biomater.
2013;16:496-504. 2019;96:149-160.
doi: 10.1016/J.MATTOD.2013.11.017 doi: 10.1016/j.actbio.2019.06.040
6. Thavornyutikarn B, Chantarapanich N, Sitthiseripratip K, 17. Montazerian H, Zhianmanesh M, Davoodi E, Milani AS,
Thouas GA, Chen Q. Bone tissue engineering scaffolding: Hoorfar M. Longitudinal and radial permeability analysis
computer-aided scaffolding techniques. Prog Biomater. of additively manufactured porous scaffolds: effect of pore
2014;3:61-102. shape and porosity. Mater Des. 2017;122:146-156.
doi: 10.1007/s40204-014-0026-7 doi: 10.1016/j.matdes.2017.03.006
Volume 10 Issue 6 (2024) 241 doi: 10.36922/ijb.3805

