Page 250 - IJB-10-6
P. 250
International Journal of Bioprinting DIW of concave hydroxyapatite scaffolds
18. Ali D, Ozalp M, Blanquer SBG, Onel S. Permeability and 28. Zhang Q, Ma L, Ji X, et al. High-strength hydroxyapatite
fluid flow-induced wall shear stress in bone scaffolds with scaffolds with minimal surface macrostructures for load-
TPMS and lattice architectures: a CFD analysis. Eur J Mech bearing bone regeneration. Adv Funct Mater. 2022;32:1-12.
B/Fluids. 2020;79:376-385. doi: 10.1002/adfm.202204182
doi: 10.1016/j.euromechflu.2019.09.015
29. Bouakaz I, Drouet C, Grossin D, Cobraiville E, Nolesn G.
19. Diez-Escudero A, Harlin H, Isaksson P, Persson C. Porous Hydroxyapatite 3D-printed scaffolds with Gyroid-TPMS
polylactic acid scaffolds for bone regeneration: a study porous structure: fabrication and in vivo pilot study in
of additively manufactured triply periodic minimal sheep. Acta Biomater. 2023;170:580-595.
surfaces and their osteogenic potential. J Tissue Eng. doi: 10.1016/j.actbio.2023.08.041
2020;11:2041731420956541. 30. Deng ZL, Pan MZ, Bin Hua S, Wu JM, Zhang XY, Shi YS.
doi: 10.1177/2041731420956541
Mechanical and degradation properties of triply periodic
20. Castro APG, Pires T, Santos JE, Gouveia BP, Fernandes PR. minimal surface (TPMS) hydroxyapatite & akermanite
Permeability versus design in TPMS scaffolds. Materials scaffolds with functional gradient structure. Ceram Int.
(Basel). 2019;12:1313. 2023;49:20808–20816.
doi: 10.3390/ma12081313 doi: 10.1016/j.ceramint.2023.03.213
21. Castro APG, Ruben RB, Gonçalves SB, Pinheiro J, Guedes 31. Roohani I, Entezari A, Zreiqat H. Liquid crystal display
JM, Fernandes PR. Numerical and experimental evaluation technique (LCD) for high resolution 3D printing of triply
of TPMS Gyroid scaffolds for bone tissue engineering. periodic minimal surface lattices bioceramics. Addit Manuf.
Comput Methods Biomech Biomed Engin. 2019;22: 2023;74:103720.
567-573. doi: 10.1016/j.addma.2023.103720
doi: 10.1080/10255842.2019.1569638
32. Bin Hua S, Yuan X, Wu JM, et al. Digital light processing
22. Maskery I, Sturm L, Aremu AO, et al. Insights into porous TPMS structural HA & akermanite bioceramics with
the mechanical properties of several triply periodic optimized performance for cancellous bone repair. Ceram
minimal surface lattice structures made by polymer Int. 2022;48:3020-3029.
additive manufacturing. Polymer (Guildf). 2018; doi: 10.1016/j.ceramint.2021.10.003
152:62–71. 33. Oftadeh R, Perez-Viloria M, Villa-Camacho JC, Vaziri
doi: 10.1016/j.polymer.2017.11.049
A, Nazarian A. Biomechanics and mechanobiology of
23. Yan C, Hao L, Hussein A, Young P. Ti-6Al-4V triply periodic trabecular bone: a review. J Biomech Eng. 2015;137:1–15.
minimal surface structures for bone implants fabricated doi: 10.1115/1.4029176
via selective laser melting. J Mech Behav Biomed Mater.
2015;51:61-73. 34. del-Mazo-Barbara L, Ginebra MP. Rheological
doi: 10.1016/j.jmbbm.2015.06.024 characterisation of ceramic inks for 3D direct ink writing: a
review. J Eur Ceram Soc. 2021;41:18-33.
24. Bobbert FSL, Lietaert K, Eftekhari AA, et al. Additively doi: 10.1016/J.JEURCERAMSOC.2021.08.031
manufactured metallic porous biomaterials based on
minimal surfaces: a unique combination of topological, 35. Raymond Y, Johansson L, Thorel E, Ginebra MP. Translation
of three-dimensional printing of ceramics in bone tissue
mechanical, and mass transport properties. Acta Biomater. engineering and drug delivery. MRS Bull. 2022;47:59-69.
2017;53:572-584. doi: 10.1557/s43577-021-00259-1
doi: 10.1016/j.actbio.2017.02.024
36. Maazouz Y, Montufar EB, Guillem-Marti J, et al. Robocasting
25. Kleger N, Fehlmann S, Lee SS, et al. Light-based printing of
leachable salt molds for facile shaping of complex structures. of biomimetic hydroxyapatite scaffolds using self-setting
Adv Mater. 2022;34(32):e2203878. inks. J Mater Chem B. 2014;2:5378-5386.
doi: 10.1002/adma.202203878 doi: 10.1039/C4TB00438H
37. Raymond S, Maazouz Y, Montufar EB, et al. Accelerated
26. Tikhonov A, Evdokimov P, Klimashina E, et al. Putlayev,
stereolithographic fabrication of three-dimensional hardening of nanotextured 3D-plotted self-setting calcium
permeable scaffolds from CaP/PEGDA hydrogel phosphate inks. Acta Biomater. 2018;75:451-462.
biocomposites for use as bone grafts. J Mech Behav Biomed doi: 10.1016/j.actbio.2018.05.042
Mater. 2020;110:103922. 38. Konka J, Buxadera-Palomero J, Espanol M, Ginebra MP. 3D
doi: 10.1016/j.jmbbm.2020.103922 printing of hierarchical porous biomimetic hydroxyapatite
scaffolds: adding concavities to the convex filaments. Acta
27. Paré A, Charbonnier B, Tournier P, et al. Tailored three-
dimensionally printed triply periodic calcium phosphate Biomater. 2021;134:744-759.
implants: a preclinical study for craniofacial bone repair. doi: 10.1016/j.actbio.2021.07.071
ACS Biomater Sci Eng. 2020;6:553-563. 39. Raymond Y, Bonany M, Lehmann C, et al. Hydrothermal
doi: 10.1021/acsbiomaterials.9b01241 processing of 3D-printed calcium phosphate scaffolds
Volume 10 Issue 6 (2024) 242 doi: 10.36922/ijb.3805

