Page 250 - IJB-10-6
P. 250

International Journal of Bioprinting                                DIW of concave hydroxyapatite scaffolds




            18.  Ali D, Ozalp M, Blanquer SBG, Onel S. Permeability and   28.  Zhang Q, Ma L, Ji X, et al. High-strength hydroxyapatite
               fluid flow-induced wall shear stress in bone scaffolds with   scaffolds with minimal surface macrostructures for load-
               TPMS and lattice architectures: a CFD analysis. Eur J Mech   bearing bone regeneration. Adv Funct Mater. 2022;32:1-12.
               B/Fluids. 2020;79:376-385.                         doi: 10.1002/adfm.202204182
               doi: 10.1016/j.euromechflu.2019.09.015
                                                               29.  Bouakaz I, Drouet C, Grossin D, Cobraiville E, Nolesn G.
            19.  Diez-Escudero A, Harlin H, Isaksson P, Persson C. Porous   Hydroxyapatite 3D-printed scaffolds with Gyroid-TPMS
               polylactic acid scaffolds for bone regeneration: a study   porous structure: fabrication and in vivo pilot study in
               of additively manufactured triply periodic minimal   sheep. Acta Biomater. 2023;170:580-595.
               surfaces and their osteogenic potential.  J Tissue Eng.       doi: 10.1016/j.actbio.2023.08.041
               2020;11:2041731420956541.                       30.  Deng ZL, Pan MZ, Bin Hua S, Wu JM, Zhang XY, Shi YS.
               doi: 10.1177/2041731420956541
                                                                  Mechanical and degradation properties of triply periodic
            20.  Castro APG, Pires T, Santos JE, Gouveia BP, Fernandes PR.   minimal surface (TPMS) hydroxyapatite & akermanite
               Permeability  versus  design in  TPMS scaffolds.  Materials   scaffolds with functional gradient structure.  Ceram  Int.
               (Basel). 2019;12:1313.                             2023;49:20808–20816.
               doi: 10.3390/ma12081313                            doi: 10.1016/j.ceramint.2023.03.213
            21.  Castro APG, Ruben RB, Gonçalves SB, Pinheiro J, Guedes   31.  Roohani I, Entezari A, Zreiqat H. Liquid crystal display
               JM, Fernandes PR. Numerical and experimental evaluation   technique (LCD) for high resolution 3D printing of triply
               of TPMS Gyroid scaffolds for bone tissue engineering.   periodic minimal surface lattices bioceramics. Addit Manuf.
               Comput Methods Biomech Biomed Engin. 2019;22:      2023;74:103720.
               567-573.                                           doi: 10.1016/j.addma.2023.103720
               doi: 10.1080/10255842.2019.1569638
                                                               32.  Bin Hua S, Yuan X, Wu JM, et al. Digital light processing
            22.  Maskery I, Sturm L, Aremu AO, et al. Insights into   porous TPMS structural HA & akermanite bioceramics with
               the mechanical properties of several triply periodic   optimized performance for cancellous bone repair. Ceram
               minimal surface lattice structures made by polymer   Int. 2022;48:3020-3029.
               additive  manufacturing.  Polymer  (Guildf).  2018;      doi: 10.1016/j.ceramint.2021.10.003
               152:62–71.                                      33.  Oftadeh R, Perez-Viloria M, Villa-Camacho JC, Vaziri
               doi: 10.1016/j.polymer.2017.11.049
                                                                  A,  Nazarian  A.  Biomechanics  and  mechanobiology  of
            23.  Yan C, Hao L, Hussein A, Young P. Ti-6Al-4V triply periodic   trabecular bone: a review. J Biomech Eng. 2015;137:1–15.
               minimal surface structures for bone implants fabricated      doi: 10.1115/1.4029176
               via selective laser melting.  J Mech Behav Biomed Mater.
               2015;51:61-73.                                  34.  del-Mazo-Barbara  L,  Ginebra  MP.  Rheological
               doi: 10.1016/j.jmbbm.2015.06.024                   characterisation of ceramic inks for 3D direct ink writing: a
                                                                  review. J Eur Ceram Soc. 2021;41:18-33.
            24.  Bobbert FSL, Lietaert K, Eftekhari AA, et al. Additively      doi: 10.1016/J.JEURCERAMSOC.2021.08.031
               manufactured metallic porous biomaterials based on
               minimal surfaces: a unique combination of topological,   35.  Raymond Y, Johansson L, Thorel E, Ginebra MP. Translation
                                                                  of three-dimensional printing of ceramics in bone tissue
               mechanical, and mass transport properties. Acta Biomater.   engineering and drug delivery. MRS Bull. 2022;47:59-69.
               2017;53:572-584.                                   doi: 10.1557/s43577-021-00259-1
               doi: 10.1016/j.actbio.2017.02.024
                                                               36.  Maazouz Y, Montufar EB, Guillem-Marti J, et al. Robocasting
            25.  Kleger N, Fehlmann S, Lee SS, et al. Light-based printing of
               leachable salt molds for facile shaping of complex structures.   of biomimetic hydroxyapatite scaffolds using self-setting
               Adv Mater. 2022;34(32):e2203878.                   inks. J Mater Chem B. 2014;2:5378-5386.
               doi: 10.1002/adma.202203878                        doi: 10.1039/C4TB00438H
                                                               37.  Raymond S, Maazouz Y, Montufar EB, et al. Accelerated
            26.  Tikhonov A, Evdokimov P, Klimashina E, et al. Putlayev,
               stereolithographic  fabrication  of  three-dimensional  hardening of nanotextured 3D-plotted self-setting calcium
               permeable  scaffolds  from  CaP/PEGDA  hydrogel    phosphate inks. Acta Biomater. 2018;75:451-462.
               biocomposites for use as bone grafts. J Mech Behav Biomed      doi: 10.1016/j.actbio.2018.05.042
               Mater. 2020;110:103922.                         38.  Konka J, Buxadera-Palomero J, Espanol M, Ginebra MP. 3D
               doi: 10.1016/j.jmbbm.2020.103922                   printing of hierarchical porous biomimetic hydroxyapatite
                                                                  scaffolds: adding concavities to the convex filaments. Acta
            27.  Paré A, Charbonnier B, Tournier P, et al. Tailored three-
               dimensionally printed triply periodic calcium phosphate   Biomater. 2021;134:744-759.
               implants:  a preclinical study for craniofacial bone  repair.      doi: 10.1016/j.actbio.2021.07.071
               ACS Biomater Sci Eng. 2020;6:553-563.           39.  Raymond Y, Bonany M, Lehmann C, et al. Hydrothermal
               doi: 10.1021/acsbiomaterials.9b01241               processing of 3D-printed calcium phosphate scaffolds


            Volume 10 Issue 6 (2024)                       242                                doi: 10.36922/ijb.3805
   245   246   247   248   249   250   251   252   253   254   255