Page 305 - IJB-10-6
P. 305

International Journal of Bioprinting                          3D-Printed Zn/MgHA-PCL for angio/osteogenesis




            Conflict of interest                                  bidirectionally regulates bone homeostasis to accelerate
                                                                  bone regeneration. Adv Healthc Mater. 2023;12:e202300292.
            The authors declare that they have no known competing      doi: 10.1002/adhm.202300292
            financial interests or personal relationships that could have
            appeared to influence the work reported in this paper.  6.   Wu YG, Xing ZY, Zhao R, et al. Engineered cell-laden armor
                                                                  unit-mimicking bioceramic granules for bone regeneration.
            Author contributions                                  Adv Funct Mater. 2024;34:10331.
                                                                  doi: 10.1002/adfm.202310331
            Conceptualization: Jie Weng, Pengfei Zheng, Jinwu Wang  7.   Zhao R, Chen SY, Zhao WL, et al. A bioceramic scaffold
            Formal analysis: Hao Huang, Lei Qiang, Yiwei Zhang    composed   of  strontium-doped  three-dimensional
            Investigation: Lei Qiang, Guanlu Shen, Quan Zhang     hydroxyapatite whiskers for enhanced bone regeneration
            Methodology: Hao Huang, Lei Qiang, Ya Fang, Weize Kong  in  osteoporotic  defects.  Theranostics.  2020;10:
            Writing – original draft: Lei Qiang                   1572-1589.
            Writing – review & editing:  Jing Shan, Yihao Liu,      doi: 10.7150/thno.40103
               Chengwei Wang                                   8.   Xu JK, Hu PJ, Zhang XT, et al. Magnesium implantation
                                                                  or supplementation ameliorates bone disorder in CFTR-
            Ethics approval and consent to participate            mutant mice through an ATF4-dependent Wnt/β-catenin
            The animal surgical procedures involved in this study   signaling. Bioact Mater. 2022;8:95-108.
            followed the recommendations of the Institutional Animal   doi:  10.1016/j.bioactmat.2021.06.034
            Care and Use Committee (IACUC) of Shanghai Jiao Tong   9.   Li WT, Miao WQ, Liu YH, et al. Bioprinted constructs
            University (animal protocol number: O_A2023001).      that mimic the ossification center microenvironment for
                                                                  targeted innervation in bone regeneration. Adv Funct Mater.
            Consent for publication                               2022;32:2109871.
                                                                  doi:  10.1002/adfm.202109871
            Not applicable.
                                                               10.  Gu JN,  Zhang QQ, Geng  MR,  et al.  Construction of
            Availability of data                                  nanofibrous scaffolds with interconnected perfusable
                                                                  microchannel networks for engineering of vascularized
            Data  is  available  from  the  corresponding  author  upon   bone tissue. Bioact Mater. 2021;6:3254-3268.
            reasonable request.                                   doi: 10.1016/j.bioactmat.2021.02.033
                                                               11.  Dorozhkin SV. Multiphasic calcium orthophosphate (CaPO)
            References                                            bioceramics and their biomedical applications. Ceram Int.
                                                                  2016;42:6529-6554.
            1.   Li Y, Xu JK, Mi J, et al. Biodegradable magnesium combined   doi:  10.1016/j.ceramint.2016.01.062
               with distraction osteogenesis synergistically stimulates bone
               tissue regeneration via CGRP-FAK-VEGF signaling axis.   12.  Thompson JB, Kindt JH, Drake B, et al. Bone indentation
               Biomaterials. 2021;275:120984.                     recovery time correlates with bond reforming time. Nature.
               doi:  10.1016/j.biomaterials.2021.120984           2001;414:773-776.
                                                                  doi: 10.1038/414773a
            2.   Wang Q,  Xia QQ, Wu Y,  et al.  3D-printed  atsttrin-
               incorporated alginate/hydroxyapatite scaffold promotes   13.  Lim KT, Patel DK, Dutta SD, et al. Human teeth-derived
               bone defect regeneration with TNF/TNFR signaling   bioceramics for improved bone regeneration. Nanomaterials
               involvement. Adv Healthc Mater. 2015;4:1701-1708.  Basel. 2020;10:2396.
               doi:  10.1002/adhm.201500211                       doi: 10.3390/nano10122396
            3.   Hasani-Sadrabadi MM, Sarrion P, Pouraghaei S, et al.   14.  Zhang H, Huang HF, Hao GR, et al. 3D printing hydrogel
               An engineered cell-laden adhesive hydrogel promotes   scaffolds with nanohydroxyapatite gradient to effectively
               craniofacial bone tissue regeneration in rats. Sci Transl Med.   repair osteochondral defects in rats.  Adv Funct Mater.
               2020;12:eaay6853.                                  2021;31:2006697.
               doi:  10.1126/scitranslmed.aay6853                 doi:  10.1002/adfm.202006697
            4.   Possolli NM, Raupp-Pereira F, Montedo ORK, et al. LZS   15.  Huang H, Yang AC, Li JS, et al. Preparation of multigradient
               bioactive glass-ceramic scaffolds: colloidal processing, foam   hydroxyapatite scaffolds and evaluation of their
               replication technique and mechanical properties to bone   osteoinduction properties. Regen Biomater. 2022;9:001.
               tissue engineering. Open Ceram. 2022;9:100219.     doi: 10.1093/rb/rbac001
               doi:  10.1016/j.oceram.2022.100219
                                                               16.  Supova M. Substituted hydroxyapatites for biomedical
            5.   Ren Y, Kong WQ, Liu YH, et al. Photocurable 3D-printed   applications: a review. Ceram Int. 2015;41:9203-9231.
               PMBG/TCP scaffold coordinated with PTH (1-34)      doi: 10.1016/j.ceramint.2015.03.316

            Volume 10 Issue 6 (2024)                       297                                doi: 10.36922/ijb.4243
   300   301   302   303   304   305   306   307   308   309   310