Page 305 - IJB-10-6
P. 305
International Journal of Bioprinting 3D-Printed Zn/MgHA-PCL for angio/osteogenesis
Conflict of interest bidirectionally regulates bone homeostasis to accelerate
bone regeneration. Adv Healthc Mater. 2023;12:e202300292.
The authors declare that they have no known competing doi: 10.1002/adhm.202300292
financial interests or personal relationships that could have
appeared to influence the work reported in this paper. 6. Wu YG, Xing ZY, Zhao R, et al. Engineered cell-laden armor
unit-mimicking bioceramic granules for bone regeneration.
Author contributions Adv Funct Mater. 2024;34:10331.
doi: 10.1002/adfm.202310331
Conceptualization: Jie Weng, Pengfei Zheng, Jinwu Wang 7. Zhao R, Chen SY, Zhao WL, et al. A bioceramic scaffold
Formal analysis: Hao Huang, Lei Qiang, Yiwei Zhang composed of strontium-doped three-dimensional
Investigation: Lei Qiang, Guanlu Shen, Quan Zhang hydroxyapatite whiskers for enhanced bone regeneration
Methodology: Hao Huang, Lei Qiang, Ya Fang, Weize Kong in osteoporotic defects. Theranostics. 2020;10:
Writing – original draft: Lei Qiang 1572-1589.
Writing – review & editing: Jing Shan, Yihao Liu, doi: 10.7150/thno.40103
Chengwei Wang 8. Xu JK, Hu PJ, Zhang XT, et al. Magnesium implantation
or supplementation ameliorates bone disorder in CFTR-
Ethics approval and consent to participate mutant mice through an ATF4-dependent Wnt/β-catenin
The animal surgical procedures involved in this study signaling. Bioact Mater. 2022;8:95-108.
followed the recommendations of the Institutional Animal doi: 10.1016/j.bioactmat.2021.06.034
Care and Use Committee (IACUC) of Shanghai Jiao Tong 9. Li WT, Miao WQ, Liu YH, et al. Bioprinted constructs
University (animal protocol number: O_A2023001). that mimic the ossification center microenvironment for
targeted innervation in bone regeneration. Adv Funct Mater.
Consent for publication 2022;32:2109871.
doi: 10.1002/adfm.202109871
Not applicable.
10. Gu JN, Zhang QQ, Geng MR, et al. Construction of
Availability of data nanofibrous scaffolds with interconnected perfusable
microchannel networks for engineering of vascularized
Data is available from the corresponding author upon bone tissue. Bioact Mater. 2021;6:3254-3268.
reasonable request. doi: 10.1016/j.bioactmat.2021.02.033
11. Dorozhkin SV. Multiphasic calcium orthophosphate (CaPO)
References bioceramics and their biomedical applications. Ceram Int.
2016;42:6529-6554.
1. Li Y, Xu JK, Mi J, et al. Biodegradable magnesium combined doi: 10.1016/j.ceramint.2016.01.062
with distraction osteogenesis synergistically stimulates bone
tissue regeneration via CGRP-FAK-VEGF signaling axis. 12. Thompson JB, Kindt JH, Drake B, et al. Bone indentation
Biomaterials. 2021;275:120984. recovery time correlates with bond reforming time. Nature.
doi: 10.1016/j.biomaterials.2021.120984 2001;414:773-776.
doi: 10.1038/414773a
2. Wang Q, Xia QQ, Wu Y, et al. 3D-printed atsttrin-
incorporated alginate/hydroxyapatite scaffold promotes 13. Lim KT, Patel DK, Dutta SD, et al. Human teeth-derived
bone defect regeneration with TNF/TNFR signaling bioceramics for improved bone regeneration. Nanomaterials
involvement. Adv Healthc Mater. 2015;4:1701-1708. Basel. 2020;10:2396.
doi: 10.1002/adhm.201500211 doi: 10.3390/nano10122396
3. Hasani-Sadrabadi MM, Sarrion P, Pouraghaei S, et al. 14. Zhang H, Huang HF, Hao GR, et al. 3D printing hydrogel
An engineered cell-laden adhesive hydrogel promotes scaffolds with nanohydroxyapatite gradient to effectively
craniofacial bone tissue regeneration in rats. Sci Transl Med. repair osteochondral defects in rats. Adv Funct Mater.
2020;12:eaay6853. 2021;31:2006697.
doi: 10.1126/scitranslmed.aay6853 doi: 10.1002/adfm.202006697
4. Possolli NM, Raupp-Pereira F, Montedo ORK, et al. LZS 15. Huang H, Yang AC, Li JS, et al. Preparation of multigradient
bioactive glass-ceramic scaffolds: colloidal processing, foam hydroxyapatite scaffolds and evaluation of their
replication technique and mechanical properties to bone osteoinduction properties. Regen Biomater. 2022;9:001.
tissue engineering. Open Ceram. 2022;9:100219. doi: 10.1093/rb/rbac001
doi: 10.1016/j.oceram.2022.100219
16. Supova M. Substituted hydroxyapatites for biomedical
5. Ren Y, Kong WQ, Liu YH, et al. Photocurable 3D-printed applications: a review. Ceram Int. 2015;41:9203-9231.
PMBG/TCP scaffold coordinated with PTH (1-34) doi: 10.1016/j.ceramint.2015.03.316
Volume 10 Issue 6 (2024) 297 doi: 10.36922/ijb.4243

