Page 306 - IJB-10-6
P. 306
International Journal of Bioprinting 3D-Printed Zn/MgHA-PCL for angio/osteogenesis
17. Lakhkar NJ, Lee IH, Kim HW, et al. Bone formation 28. Shrestha S, Lee SY, Shrestha D, et al. Micro/nanometer-sized
controlled by biologically relevant inorganic ions: role and porous structure of zinc phosphate incorporated Ti (HPO4)
controlled delivery from phosphate-based glasses. Adv Drug hydrate bioceramic induces osteogenic gene expression
Deliver Rev. 2013;65:405-420. and enhances osteoporotic bone regeneration. Chem Eng J.
doi: 10.1016/j.addr.2012.05.015 2022;450:138360.
doi: 10.1016/j.cej.2022.138360
18. Li SJ, Zhang LY, Liu CY, et al. Spontaneous immuno-
modulation and regulation of angiogenesis and osteogenesis 29. Yin S, Lin SH, Xu JY, et al. Dominoes with interlocking
by Sr/Cu-borosilicate glass (BSG) bone cement to repair consequences triggered by zinc: involvement of
critical bone defects. Bioact Mater. 2023;23:101-117. microelement-stimulated MSC-derived exosomes in senile
doi: 10.1016/j.bioactmat.2022.10.021 osteogenesis and osteoclast dialogue. J Nanobiotechnol.
2023;21:346.
19. D’Mello S, Elangovan S, Hong L, et al. Incorporation of
copper into chitosan scaffolds promotes bone regeneration doi: 10.1186/s12951-023-02085-w
in rat calvarial defects. J Biomed Mater Res B. 2015;103: 30. Shahed CA, Ahmad F, Günister E, et al. Antibacterial
1044-1049. mechanism with consequent cytotoxicity of different
doi: 10.1002/jbm.b.33290 reinforcements in biodegradable magnesium and zinc
alloys: a review. J Magnes Alloy. 2023;11:3038-3058.
20. Wang Y, Wang XY, Pang YY, et al. Ion-engineered
microcryogels via osteogenesis-angiogenesis coupling doi: 10.1016/j.jma.2023.08.018
and inflammation reversing augment vascularized bone 31. Matsunaga K. First-principles study of substitutional
regeneration. Adv Funct Mater. 2024;34(34):2400745. magnesium and zinc in hydroxyapatite and octacalcium
doi: 10.1002/adfm.202400745 phosphate. J Chem Phys. 2008;128:245101.
doi: 10.1063/1.2940337
21. Ghorbani FM, Kaffashi B, Shokrollahi P, et al. PCL/
chitosan/Zn-doped nHA electrospun nanocomposite 32. Naing MW, Chua CK, Leong KF, et al. Fabrication of
scaffold promotes adipose derived stem cells adhesion and customised scaffolds using computer-aided design
proliferation. Carbohyd Polym. 2015;118:133-142. and rapid prototyping techniques. Rapid Prototyping J.
doi: 10.1016/j.carbpol.2014.10.071 2005;11(4):249-259.
doi: 10.1108/13552540510612938
22. Kulanthaivel S, Mishra U, Agarwal T, et al. Improving
the osteogenic and angiogenic properties of synthetic 33. Chua CK, Leong KF, Cheah CM, et al. Development of
hydroxyapatite by dual doping of bivalent cobalt and a tissue engineering scaffold structure library for rapid
magnesium ion. Ceram Int. 2015;41:11323-11333. prototyping. part 1: investigation and classification. Int J Adv
doi: 10.1016/j.ceramint.2015.05.090 Manuf Technol. 2003;21:291-301.
doi: 10.1007/s001700300034
23. Xiao DQ, Yang F, Zhao Q, et al. Fabrication of a Cu/Zn co-
incorporated calcium phosphate scaffold-derived GDF-5 34. Chua CK, Leong KF, Cheah CM, et al. Development of
sustained release system with enhanced angiogenesis and a tissue engineering scaffold structure library for rapid
osteogenesis properties. RSC Adv. 2018;8:29526-29534. prototyping. Part 2: Parametric library and assembly
doi: 10.1039/c8ra05441j program. Int J Adv Manuf Technol. 2003;21:302-312.
doi: 10.1007/s001700300035
24. Elrayah A, Zhi W, Feng S, et al. Preparation of micro/nano-
structure copper-substituted hydroxyapatite scaffolds with 35. Dong C, Wei H, Zhang XN, et al. 3D printed hydrogel/
improved angiogenesis capacity for bone regeneration. wesselsite-PCL composite scaffold with structural change
Materials. 2018;11:1516. from core/shell fibers to microchannels for enhanced bone
doi: 10.3390/ma11091516 regeneration. Compos B: Eng. 2022;246:110264.
doi: 10.1016/j.compositesb.2022.110264
25. Shoaib M, Bahadur A, Iqbal S, et al. Magnesium doped
mesoporous bioactive glass nanoparticles: a promising 36. Xiao DQ, Tan Z, Fu YK, et al. Hydrothermal synthesis of
material for apatite formation and mitomycin c delivery to hollow hydroxyapatite microspheres with nano-structured
the MG-63 cancer cells. J Alloy Compd. 2021;866:159013. surface assisted by inositol hexakisphosphate. Ceram Int.
doi: 10.1016/j.jallcom.2021.159013 2014;40:10183-10188.
doi: 10.1016/j.ceramint.2014.02.057
26. Castiglioni S, Cazzaniga A, Albisetti W, et al. Magnesium
and osteoporosis: current state of knowledge and future 37. Huang H, Qiang L, Fan MJ, et al. 3D-printed tri-element-
research directions. Nutrients. 2013;5:3022-3033. doped hydroxyapatite/ polycaprolactone composite scaffolds
doi: 10.3390/nu5083022 with antibacterial potential for osteosarcoma therapy and
bone regeneration. Bioact Mater. 2024;31:18-37.
27. Rude RK, Singer FR, and Gruber HE. Skeletal and
hormonal effects of magnesium deficiency. J Am Coll Nutr. doi: 10.1016/j.bioactmat.2023.07.004
2009;28:131-141. 38. Kim H, Mondal S, Bharathiraja S, et al. Optimized Zn-doped
doi: 10.1080/07315724.2009.10719764 hydroxyapatite/doxorubicin bioceramics system for efficient
Volume 10 Issue 6 (2024) 298 doi: 10.36922/ijb.4243

