Page 342 - IJB-10-6
P. 342
International Journal of Bioprinting 3D-printed PPDO/GO stents for CHD treatment.
endovascular stents. Mater Sci Eng C Mater Biol Appl. 26. Vahabli E, Mann J, Heidari BS, et al. The technological
2015;56:467-472. advancement to engineer next-generation stent-grafts:
doi: 10.1016/j.msec.2015.07.022 design, material, and fabrication techniques. Adv Healthc
Mater. 2022;11(13):2200271.
15. Sun L, Li J-j, Xu Y-k, Xie Y-m, Wang S-s, Zhang Z-w. doi: 10.1002/adhm.202200271
Initial status and 3-month results relating to the use of
biodegradable nitride iron stents in children and the 27. Wang L, Jiao L, Pang S, Yan P, Wang X, Qiu T. The
evaluation of right ventricular function. Front Cardiovasc development of design and manufacture techniques for
Med. 2022;9:914370. bioresorbable coronary artery stents. Micromachines.
doi: 10.3389/fcvm.2022.914370 2021;12(8):990.
doi: 10.3390/mi12080990
16. Veeram Reddy SR, Welch TR, Nugent AW. Biodegradable
stent use for congenital heart disease. Prog Pediatr Cardiol. 28. Rebelo R, Vila N, Fangueiro R, Carvalho S, Rana S.
2021;61:101349. Influence of design parameters on the mechanical behavior
doi: 10.1016/j.ppedcard.2021.101349 and porosity of braided fibrous stents. Mater Design.
2015;86:237-247.
17. Ormiston JA, Serruys PWS. Bioabsorbable coronary stents. doi: 10.1016/j.matdes.2015.07.051
Circ Cardiovasc Intervent. 2009;2(3):255-260.
doi: 10.1161/CIRCINTERVENTIONS.109.859173 29. Khalaj R, Tabriz AG, Okereke MI, Douroumis D. 3D
printing advances in the development of stents. Int J Pharm.
18. Ang HY, Huang YY, Lim ST, Wong P, Joner M, Foin N. 2021;609:121153.
Mechanical behavior of polymer-based vs. metallic-based doi: 10.1016/j.ijpharm.2021.121153
bioresorbable stents. J Thorac Dis. 2017;9(Suppl 9):s923-s934.
doi: 10.21037/jtd.2017.06.30 30. Ng WL, An J, Chua CK. Process, material, and regulatory
considerations for 3D printed medical devices and tissue
19. Sousa AM, Amaro AM, Piedade AP. 3D printing of constructs. Engineering. 2024;36:146-166.
polymeric bioresorbable stents: a strategy to improve both doi: 10.1016/j.eng.2024.01.028
cellular compatibility and mechanical properties. Polymers
(Basel). 2022;14(6):1099. 31. van Lith R, Baker E, Ware H, et al. 3D-printing strong high-
doi: 10.3390/polym14061099. resolution antioxidant bioresorbable vascular stents. Adv
Mater Technol. 2016;1(9):1600138.
20. Bratincsak A, Moore JW, Gulker B, Choules B, Koren L, El- doi: 10.1002/admt.201600138
Said HG. Breaking the limit: mechanical characterization of
overexpanded balloon expandable stents used in congenital 32. Ware HOT, Farsheed AC, Van Lith R, Baker E, Ameer G, Sun
heart disease. Congenit Heart Dis. 2015;10(1):51-63. C. Process development for high-resolution 3D-printing of
doi: 10.1111/chd.12175 bioresorbable vascular stents. Paper presented at: Conference
on Advanced Fabrication Technologies for Micro/Nano Optics
21. Yasmin F, Vafadar A, Tolouei-Rad M. Application of and Photonics X; Jan 29-Feb 01, 2017; San Francisco, CA.
additive manufacturing in the development of polymeric doi: 10.1117/12.2252856
bioresorbable cardiovascular stents: a review. Adv Mater
Technol. 2024;2400210. 33. Flege C, Vogt F, Höges S, et al. Development and
doi: 10.1002/admt.202400210 characterization of a coronary polylactic acid stent prototype
generated by selective laser melting. J Mater Sci Mater Med.
22. Martins JA, Lach AA, Morris HL, Carr AJ, Mouthuy P-A. 2013;24(1):241-255.
Polydioxanone implants: a systematic review on safety and doi: 10.1007/s10856-012-4779-z
performance in patients. J Biomater Appl. 2020;34(7):902-916.
doi: 10.1177/0885328219888841 34. Li JF, Ye WY, Fan ZY, Lu ZQ. Stereocomplex poly(lactic acid)
vascular stents by 3D-printing with long chain branching
23. Zamiri P, Kuang Y, Sharma U, et al. The biocompatibility structures: toward desirable crystallization properties and
of rapidly degrading polymeric stents in porcine carotid mechanical performance. Polym Adv Technol. 2021;32(1):
arteries. Biomaterials. 2010;31(31):7847-7855. 97-110.
doi: 10.1016/j.biomaterials.2010.06.057 doi: 10.1002/pat.5064
24. Zhao F, Xue W, Wang F, et al. Braided bioresorbable 35. Misra SK, Ostadhossein F, Babu R, et al. 3D-printed multidrug-
cardiovascular stents mechanically reinforced by axial eluting stent from graphene-nanoplatelet-doped biodegradable
runners. J Mech Behav Biomed Mater. 2019;89:19-32. polymer composite. Adv Healthc Mater. 2017;6(11).
doi: 10.1016/j.jmbbm.2018.09.003 doi: 10.1002/adhm.201700008
25. Sun J, Sun K, Bai K, et al. Oversized composite braided 36. Guerra A, Roca A, de Ciurana J. A novel 3D additive
biodegradable stents with post-dilatation for pediatric manufacturing machine to biodegradable stents. Paper
applications: mid-term results of a porcine study. Biomater presented at: 7th Manufacturing-Engineering-Society
Sci. 2020;8(18):5183-5195. International Conference (MESIC); Jun 28-30, 2017;
doi: 10.1039/d0bm00567c Vigo, Spain.
Volume 10 Issue 6 (2024) 334 doi: 10.36922/ijb.4530

