Page 342 - IJB-10-6
P. 342

International Journal of Bioprinting                           3D-printed PPDO/GO stents for CHD treatment.




               endovascular stents.  Mater Sci Eng C Mater Biol Appl.   26.  Vahabli  E, Mann J, Heidari BS,  et al.  The technological
               2015;56:467-472.                                   advancement to engineer next-generation stent-grafts:
               doi: 10.1016/j.msec.2015.07.022                    design, material, and fabrication techniques.  Adv Healthc
                                                                  Mater. 2022;11(13):2200271.
            15.  Sun L, Li J-j, Xu Y-k, Xie Y-m, Wang S-s, Zhang Z-w.      doi: 10.1002/adhm.202200271
               Initial status and 3-month results relating to the use of
               biodegradable nitride iron stents in children and the   27.  Wang L, Jiao L, Pang S, Yan P, Wang X, Qiu T. The
               evaluation  of  right  ventricular  function.  Front Cardiovasc   development of design and manufacture techniques for
               Med. 2022;9:914370.                                bioresorbable coronary artery stents.  Micromachines.
               doi: 10.3389/fcvm.2022.914370                      2021;12(8):990.
                                                                  doi:  10.3390/mi12080990
            16.  Veeram Reddy SR, Welch TR, Nugent AW. Biodegradable
               stent use for congenital heart disease. Prog Pediatr Cardiol.   28.  Rebelo R, Vila N, Fangueiro R, Carvalho S, Rana S.
               2021;61:101349.                                    Influence of design parameters on the mechanical behavior
               doi: 10.1016/j.ppedcard.2021.101349                and porosity of braided fibrous stents.  Mater Design.
                                                                  2015;86:237-247.
            17.  Ormiston JA, Serruys PWS. Bioabsorbable coronary stents.      doi: 10.1016/j.matdes.2015.07.051
               Circ Cardiovasc Intervent. 2009;2(3):255-260.
               doi: 10.1161/CIRCINTERVENTIONS.109.859173       29.  Khalaj R, Tabriz AG, Okereke MI, Douroumis D. 3D
                                                                  printing advances in the development of stents. Int J Pharm.
            18.  Ang HY, Huang YY, Lim ST, Wong P, Joner M, Foin N.   2021;609:121153.
               Mechanical behavior of polymer-based vs. metallic-based      doi: 10.1016/j.ijpharm.2021.121153
               bioresorbable stents. J Thorac Dis. 2017;9(Suppl 9):s923-s934.
               doi: 10.21037/jtd.2017.06.30                    30.  Ng WL, An J, Chua CK. Process, material, and regulatory
                                                                  considerations  for  3D  printed  medical  devices  and  tissue
            19.  Sousa AM, Amaro AM, Piedade AP. 3D printing of   constructs. Engineering. 2024;36:146-166.
               polymeric bioresorbable stents: a strategy to improve both      doi: 10.1016/j.eng.2024.01.028
               cellular compatibility and mechanical properties. Polymers
               (Basel). 2022;14(6):1099.                       31.  van Lith R, Baker E, Ware H, et al. 3D-printing strong high-
               doi:  10.3390/polym14061099.                       resolution antioxidant bioresorbable vascular stents.  Adv
                                                                  Mater Technol. 2016;1(9):1600138.
            20.  Bratincsak A, Moore JW, Gulker B, Choules B, Koren L, El-     doi: 10.1002/admt.201600138
               Said HG. Breaking the limit: mechanical characterization of
               overexpanded balloon expandable stents used in congenital   32.  Ware HOT, Farsheed AC, Van Lith R, Baker E, Ameer G, Sun
               heart disease. Congenit Heart Dis. 2015;10(1):51-63.   C. Process development for high-resolution 3D-printing of
               doi: 10.1111/chd.12175                             bioresorbable vascular stents. Paper presented at: Conference
                                                                  on Advanced Fabrication Technologies for Micro/Nano Optics
            21.  Yasmin F, Vafadar A, Tolouei-Rad M. Application of   and Photonics X; Jan 29-Feb 01, 2017; San Francisco, CA.
               additive manufacturing in the development of polymeric      doi: 10.1117/12.2252856
               bioresorbable cardiovascular stents: a review.  Adv Mater
               Technol. 2024;2400210.                          33.  Flege C, Vogt F, Höges S, et al. Development and
               doi: 10.1002/admt.202400210                        characterization of a coronary polylactic acid stent prototype
                                                                  generated by selective laser melting. J Mater Sci Mater Med.
            22.  Martins JA, Lach AA, Morris HL, Carr AJ, Mouthuy P-A.   2013;24(1):241-255.
               Polydioxanone implants: a systematic review on safety and      doi: 10.1007/s10856-012-4779-z
               performance in patients. J Biomater Appl. 2020;34(7):902-916.
               doi: 10.1177/0885328219888841                   34.  Li JF, Ye WY, Fan ZY, Lu ZQ. Stereocomplex poly(lactic acid)
                                                                  vascular stents by 3D-printing with long chain branching
            23.  Zamiri P, Kuang Y, Sharma U, et al. The biocompatibility   structures: toward desirable crystallization properties and
               of rapidly degrading  polymeric  stents in porcine carotid   mechanical performance.  Polym  Adv  Technol.  2021;32(1):
               arteries. Biomaterials. 2010;31(31):7847-7855.     97-110.
               doi: 10.1016/j.biomaterials.2010.06.057            doi: 10.1002/pat.5064
            24.  Zhao F, Xue W, Wang F, et al. Braided bioresorbable   35.  Misra SK, Ostadhossein F, Babu R, et al. 3D-printed multidrug-
               cardiovascular stents mechanically reinforced by axial   eluting stent from graphene-nanoplatelet-doped biodegradable
               runners. J Mech Behav Biomed Mater. 2019;89:19-32.   polymer composite. Adv Healthc Mater. 2017;6(11).
               doi: 10.1016/j.jmbbm.2018.09.003                   doi: 10.1002/adhm.201700008
            25.  Sun J, Sun K, Bai K, et al. Oversized composite braided   36.  Guerra A, Roca A, de Ciurana J. A novel 3D additive
               biodegradable stents with post-dilatation for pediatric   manufacturing machine to biodegradable stents. Paper
               applications: mid-term results of a porcine study. Biomater   presented at: 7th Manufacturing-Engineering-Society
               Sci. 2020;8(18):5183-5195.                         International Conference (MESIC); Jun 28-30, 2017;
               doi: 10.1039/d0bm00567c                            Vigo, Spain.


            Volume 10 Issue 6 (2024)                       334                                doi: 10.36922/ijb.4530
   337   338   339   340   341   342   343   344   345   346   347